4,357 research outputs found

    Generalizations of the distributed Deutsch-Jozsa promise problem

    Full text link
    In the {\em distributed Deutsch-Jozsa promise problem}, two parties are to determine whether their respective strings x,y∈{0,1}nx,y\in\{0,1\}^n are at the {\em Hamming distance} H(x,y)=0H(x,y)=0 or H(x,y)=n2H(x,y)=\frac{n}{2}. Buhrman et al. (STOC' 98) proved that the exact {\em quantum communication complexity} of this problem is O(log⁑n){\bf O}(\log {n}) while the {\em deterministic communication complexity} is Ξ©(n){\bf \Omega}(n). This was the first impressive (exponential) gap between quantum and classical communication complexity. In this paper, we generalize the above distributed Deutsch-Jozsa promise problem to determine, for any fixed n2≀k≀n\frac{n}{2}\leq k\leq n, whether H(x,y)=0H(x,y)=0 or H(x,y)=kH(x,y)= k, and show that an exponential gap between exact quantum and deterministic communication complexity still holds if kk is an even such that 12n≀k<(1βˆ’Ξ»)n\frac{1}{2}n\leq k<(1-\lambda) n, where 0<Ξ»<120< \lambda<\frac{1}{2} is given. We also deal with a promise version of the well-known {\em disjointness} problem and show also that for this promise problem there exists an exponential gap between quantum (and also probabilistic) communication complexity and deterministic communication complexity of the promise version of such a disjointness problem. Finally, some applications to quantum, probabilistic and deterministic finite automata of the results obtained are demonstrated.Comment: we correct some errors of and improve the presentation the previous version. arXiv admin note: substantial text overlap with arXiv:1309.773

    Communication Complexity of Permutation-Invariant Functions

    Full text link
    Motivated by the quest for a broader understanding of communication complexity of simple functions, we introduce the class of "permutation-invariant" functions. A partial function f:{0,1}nΓ—{0,1}nβ†’{0,1,?}f:\{0,1\}^n \times \{0,1\}^n\to \{0,1,?\} is permutation-invariant if for every bijection Ο€:{1,…,n}β†’{1,…,n}\pi:\{1,\ldots,n\} \to \{1,\ldots,n\} and every x,y∈{0,1}n\mathbf{x}, \mathbf{y} \in \{0,1\}^n, it is the case that f(x,y)=f(xΟ€,yΟ€)f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}^{\pi}, \mathbf{y}^{\pi}). Most of the commonly studied functions in communication complexity are permutation-invariant. For such functions, we present a simple complexity measure (computable in time polynomial in nn given an implicit description of ff) that describes their communication complexity up to polynomial factors and up to an additive error that is logarithmic in the input size. This gives a coarse taxonomy of the communication complexity of simple functions. Our work highlights the role of the well-known lower bounds of functions such as 'Set-Disjointness' and 'Indexing', while complementing them with the relatively lesser-known upper bounds for 'Gap-Inner-Product' (from the sketching literature) and 'Sparse-Gap-Inner-Product' (from the recent work of Canonne et al. [ITCS 2015]). We also present consequences to the study of communication complexity with imperfectly shared randomness where we show that for total permutation-invariant functions, imperfectly shared randomness results in only a polynomial blow-up in communication complexity after an additive O(log⁑log⁑n)O(\log \log n) overhead
    • …
    corecore