23,360 research outputs found

    Reactive max-min ant system: An experimental analysis of the combination with K-OPT local searches

    Get PDF
    Ant colony optimization (ACO) is a stochastic search method for solving NP-hard problems. The exploration versus exploitation dilemma rises in ACO search.Reactive max-min ant system algorithm is a recent proposition to automate the exploration and exploitation.It memorizes the search regions in terms of reactive heuristics to be harnessed after restart, which is to avoid the arbitrary exploration later.This paper examined the assumption that local heuristics are useless when combined with local search especially when it applied for combinatorial optimization problems with rugged fitness landscape.Results showed that coupling reactive heuristics with k-Opt local search algorithms produces higher quality solutions and more robust search than max-min ant system algorithm.Well-known combinatorial optimization problems are used in experiments, i.e. traveling salesman and quadratic assignment problems. The benchmarking data for both problems are taken from TSPLIB and QAPLIB respectively

    WoLF Ant

    Get PDF
    Ant colony optimization (ACO) algorithms can generate quality solutions to combinatorial optimization problems. However, like many stochastic algorithms, the quality of solutions worsen as problem sizes grow. In an effort to increase performance, we added the variable step size off-policy hill-climbing algorithm called PDWoLF (Policy Dynamics Win or Learn Fast) to several ant colony algorithms: Ant System, Ant Colony System, Elitist-Ant System, Rank-based Ant System, and Max-Min Ant System. Easily integrated into each ACO algorithm, the PDWoLF component maintains a set of policies separate from the ant colony\u27s pheromone. Similar to pheromone but with different update rules, the PDWoLF policies provide a second estimation of solution quality and guide the construction of solutions. Experiments on large traveling salesman problems (TSPs) show that incorporating PDWoLF with the aforementioned ACO algorithms that do not make use of local optimizations produces shorter tours than the ACO algorithms alone

    Experiments with the Swarm Intelligence

    Get PDF
    Práce se zabývá rojovou inteligencí jako podoborem umělé inteligence. Stručně popisuje biologické pozadí problematiky a zabývá se také principy hledání cest v mravenčích koloniích. Představena je i oblast kombinatorické optimalizace a detailně jsou definovány úlohy Travelling Salesman Problem a Quadratic Assignment Problem. Hlavní část práce sestává z popisu metod rojové inteligence pro řešení uvedených problémů a zhodnocení experimentů, které byly na těchto metodách provedeny. Konkrétně jde o algoritmy Ant System, Ant Colony System, Hybrid Ant System a Max-Min Ant System. V rámci práce byla také navržena a otestována vlastní metoda Genetic Ant System, která obohacuje základní Ant System mimo jiné o vývoj parametrů jednotek na základě genetických principů. V rámci obou řešených úloh jsou porovnány výsledky popisovaných metod společně s výsledky metod klasické umělé inteligence.This work deals with the issue of swarm intelligence as a subdiscipline of artificial intelligence. It describes biological background of the dilemma briefly and presents the principles of searching paths in ant colonies as well. There is also adduced combinatorial optimization and two selected tasks are defined in detail: Travelling Salesman Problem and Quadratic Assignment Problem. The main part of this work consists of description of swarm intelligence methods for solving mentioned problems and evaluation of experiments that were made on these methods. There were tested Ant System, Ant Colony System, Hybrid Ant System and Max-Min Ant System algorithm. Within the work there were also designed and tested my own method Genetic Ant System which enriches the basic Ant System i.a. with development of unit parameters based on genetical principles. The results of described methods were compared together with the ones of classical artificial intelligence within the frame of both solved problems.

    Adaptive approach heuristics for the generalized assignment problem

    Get PDF
    The Generalized Assignment Problem consists in assigning a set of tasks to a set of agents with minimum cost. Each agent has a limited amount of a single resource and each task must be assigned to one and only one agent, requiring a certain amount of the resource of the agent. We present new metaheuristics for the generalized assignment problem based on hybrid approaches. One metaheuristic is a MAX-MIN Ant System (MMAS), an improved version of the Ant System, which was recently proposed by Stutzle and Hoos to combinatorial optimization problems, and it can be seen has an adaptive sampling algorithm that takes in consideration the experience gathered in earlier iterations of the algorithm. Moreover, the latter heuristic is combined with local search and tabu search heuristics to improve the search. A greedy randomized adaptive search heuristic (GRASP) is also proposed. Several neighborhoods are studied, including one based on ejection chains that produces good moves without increasing the computational effort. We present computational results of the comparative performance, followed by concluding remarks and ideas on future research in generalized assignment related problems.Metaheuristics, generalized assignment, local search, GRASP, tabu search, ant systems

    Artificial ants deposit pheromone to search for regulatory DNA elements

    Get PDF
    BACKGROUND: Identification of transcription-factor binding motifs (DNA sequences) can be formulated as a combinatorial problem, where an efficient algorithm is indispensable to predict the role of multiple binding motifs. An ant algorithm is a biology-inspired computational technique, through which a combinatorial problem is solved by mimicking the behavior of social insects such as ants. We developed a unique version of ant algorithms to select a set of binding motifs by considering a potential contribution of each of all random DNA sequences of 4- to 7-bp in length. RESULTS: Human chondrogenesis was used as a model system. The results revealed that the ant algorithm was able to identify biologically known binding motifs in chondrogenesis such as AP-1, NFκB, and sox9. Some of the predicted motifs were identical to those previously derived with the genetic algorithm. Unlike the genetic algorithm, however, the ant algorithm was able to evaluate a contribution of individual binding motifs as a spectrum of distributed information and predict core consensus motifs from a wider DNA pool. CONCLUSION: The ant algorithm offers an efficient, reproducible procedure to predict a role of individual transcription-factor binding motifs using a unique definition of artificial ants

    The ant colony metaphor for multiple knapsack problem

    Get PDF
    This paper presents an Ant Colony (AC) model for the Multiple Knapsack Problem (MKP). The ant colony metaphor, as well as other evolutionary metaphors, was applied successfully to diverse heavily constrained problems. An AC system is also considered a class of multiagent distributed algorithm for combinatorial optimisation. The principle of an AC system is adapted to the MKP. We present some results regarding its performance against known optimum for different instances of MKP. The obtained results show the potential power of this particular evolutionary approach for optimisation problems.Eje: Workshop sobre Aspectos Teoricos de la Inteligencia ArtificialRed de Universidades con Carreras en Informática (RedUNCI

    Interacted Multiple Ant Colonies for Search Stagnation Problem

    Get PDF
    Ant Colony Optimization (ACO) is a successful application of swarm intelligence. ACO algorithms generate a good solution at the early stages of the algorithm execution but unfortunately let all ants speedily converge to an unimproved solution. This thesis addresses the issues associated with search stagnation problem that ACO algorithms suffer from. In particular, it proposes the use of multiple interacted ant colonies as a new algorithmic framework. The proposed framework is incorporated with necessary mechanisms that coordinate the work of these colonies to avoid stagnation situations and therefore achieve a better performance compared to one colony ant algorithm. The proposed algorithmic framework has been experimentally tested on two different NP-hard combinatorial optimization problems, namely the travelling salesman problem and the single machine total weighted tardiness problem. The experimental results show the superiority of the proposed approach than existing one colony ant algorithms like the ant colony system and max-min ant system. An analysis study of the stagnation behaviour shows that the proposed algorithmic framework suffers less from stagnation than other ACO algorithmic frameworks

    Low and high level hybridization of ant colony system and genetic algorithm for job scheduling in grid computing

    Get PDF
    Hybrid metaheuristic algorithms have the ability to produce better solution than stand-alone approach and no algorithm could be concluded as the best algorithm for scheduling algorithm or in general, for combinatorial problems.This study presents the low and high level hybridization of ant colony system and genetic algorithm in solving the job scheduling in grid computing.Two hybrid algorithms namely ACS(GA) as a low level and ACS+GA as a high level are proposed.The proposed algorithms were evaluated using static benchmarks problems known as expected time to compute model. Experimental results show that ant colony system algorithm performance is enhanced when hybridized with genetic algorithm specifically with high level hybridization
    corecore