6,665 research outputs found

    Introduction of programmable logic controller in industrial engineering curriculum

    Get PDF
    Recent trends in process control and industrial automation scenarios have resulted in the emergence of many pioneering techniques that have revolutionized the manufacturing industry. In order to maintain quality and precision, advances have been associated with the increasing use of microprocessors in process control applications. Most of the industrial process control systems utilize Programmable Logic Controllers (PLC). Also due to the increase in internet usage and recent innovations in PLC software, remote monitoring and PLC control of process through the internet is also a recent trend. This thesis presents course/lab material for integration in the Industrial Engineering curriculum. The course/lab content was designed to improve the student\u27s knowledge and to broaden the industrial engineering curriculum at West Virginia University (WVU). This thesis proposes the use of inexpensive T100MD+ PLCs. A traffic light control system was developed to introduce the fundamental concepts of Boolean algebra and real-time control. A series of control exercises can be carried on the traffic light system. A temperature sensitive system was also developed. Students can test various PID control strategies on this hardware/software platform. Students will also have the ability to control the process via the internet

    Electronic CVT - Controls

    Get PDF
    The following document outlines the design process, manufacturing, and testing of the control system for an electronically controlled continuously variable transmission (ECVT). This control system was integrated into the custom designed and manufactured mechanical transmission system created in parallel by another senior project group. The transmission was designed for use in the Cal Poly Baja SAE vehicle. Through researching customer needs, competition requirements, previous and alternate CVT designs, and vehicle characteristics, we were able to determine the requirements and specifications for our unique system. Input, output, speed, and durability requirements guided our hardware selection. The primary components which comprised our system include an alternator and regulator, a custom circuit board, rotary encoders and hall effect sensors, brushed DC motors, lead screws, and a custom system enclosure; further details are included in the Final Design section of this report. With the knowledge of our vehicle characteristics, actuation mode, and inputs, a system model determined that a standard proportional + integral action (PI) controller would be sufficient to obtain the speed and accuracy demanded by our customer needs. Electrical components were assembled, tested, and programmed on a prototyping breadboard, and a custom printed circuit board (PCB) was outsourced for manufacture following qualification of our prototype. The final production board was bench tested with the mechanical CVT system to ensure it met all customer and design requirements. Furthermore, the enclosure was tested to ensure the safety and durability of the electrical systems. Planning and timing mismanagement between our team, the mechanical design team, and Cal Poly SAE Baja team, in conjunction with controls specific setbacks, resulted in the final combined system remaining untested on the Baja vehicle. This project is being continued by a new senior project group which will continue to test and improve upon the current system during the 2019-2020 academic year

    Automation and Robotics Used in Hydroponic System

    Get PDF
    Hydroponic system requires periodic labor, a systematic approach, repetitive motion and a structured environment. Automation, robotics and IoT have allowed farmers to monitoring all the variables in plant, root zone and environment under hydroponics. This research introduces findings in design with real time operating systems based on microcontrollers; pH fuzzy logic control system for nutrient solution in embed and flow hydroponic culture; hydroponic system in combination with automated drip irrigation; expert system-based automation system; automated hydroponics nutrition plants systems; hydroponic management and monitoring system for an intelligent hydroponic system using internet of things and web technology; neural network-based fault detection in hydroponics; additional technologies implemented in hydroponic systems and robotics in hydroponic systems. The above advances will improve the efficiency of hydroponics to increase the quality and quantity of the produce and pose an opportunity for the growth of the hydroponics market in near future

    A multiple in-camera processing system for machine vision.

    Get PDF
    In a typical machine vision application, a line-scan camera positioned on the production line captures images of the parts to be inspected and sends them to the machine vision computer. The computer then uses high-speed data acquisition devices and sophisticated analysis software to extract information from these cameras and generates decisions about the product and manufacturing system. As the manufacturing systems increasingly generate more fine featured and advanced products, the need for higher resolution and faster processing of these camera images is necessary to maintain quality control. To reduce the overwhelming amount of data from multiple camera systems to the analysis computer, an in-camera processing system is introduced. This system involves placing a computing system inside the camera which can perform similar operations to the analysis system, but without all of the additional overhead components. The work presented in this thesis describes an enhanced embedded system which is mounted into a DALSA line-scan camera. This system provides support for real-time one dimensional signal processing with the aid of integrated hardware and software resources.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1999 .M89. Source: Masters Abstracts International, Volume: 40-03, page: 0757. Adviser: Graham A. Jullien. Thesis (M.Sc.)--University of Windsor (Canada), 1999

    Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas

    Full text link
    The main interest of this thesis consists of the study and implementation of postprocessors to adapt the toolpath generated by a Computer Aided Manufacturing (CAM) system to a complex robotic workcell of eight joints, devoted to the rapid prototyping of 3D CAD-defined products. It consists of a 6R industrial manipulator mounted on a linear track and synchronized with a rotary table. To accomplish this main objective, previous work is required. Each task carried out entails a methodology, objective and partial results that complement each other, namely: - It is described the architecture of the workcell in depth, at both displacement and joint-rate levels, for both direct and inverse resolutions. The conditioning of the Jacobian matrix is described as kinetostatic performance index to evaluate the vicinity to singular postures. These ones are analysed from a geometric point of view. - Prior to any machining, the additional external joints require a calibration done in situ, usually in an industrial environment. A novel Non-contact Planar Constraint Calibration method is developed to estimate the external joints configuration parameters by means of a laser displacement sensor. - A first control is originally done by means of a fuzzy inference engine at the displacement level, which is integrated within the postprocessor of the CAM software. - Several Redundancy Resolution Schemes (RRS) at the joint-rate level are compared for the configuration of the postprocessor, dealing not only with the additional joints (intrinsic redundancy) but also with the redundancy due to the symmetry on the milling tool (functional redundancy). - The use of these schemes is optimized by adjusting two performance criterion vectors related to both singularity avoidance and maintenance of a preferred reference posture, as secondary tasks to be done during the path tracking. Two innovative fuzzy inference engines actively adjust the weight of each joint in these tasks.Andrés De La Esperanza, FJ. (2011). Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10627Palanci

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    High performance position control for permanent magnet synchronous drives

    Get PDF
    In the design and test of electric drive control systems, computer simulations provide a useful way to verify the correctness and efficiency of various schemes and control algorithms before the final system is actually constructed, therefore, development time and associated costs are reduced. Nevertheless, the transition from the simulation stage to the actual implementation has to be as straightforward as possible. This document presents the design and implementation of a position control system for permanent magnet synchronous drives, including a review and comparison of various related works about non-linear control systems applied to this type of machine. The overall electric drive control system is simulated and tested in Proteus VSM software which is able to simulate the interaction between the firmware running on a microcontroller and analogue circuits connected to it. The dsPIC33FJ32MC204 is used as the target processor to implement the control algorithms. The electric drive model is developed using elements existing in the Proteus VSM library. As in any high performance electric drive system, field oriented control is applied to achieve accurate torque control. The complete control system is distributed in three control loops, namely torque, speed and position. A standard PID control system, and a hybrid control system based on fuzzy logic are implemented and tested. The natural variation of motor parameters, such as winding resistance and magnetic flux are also simulated. Comparisons between the two control schemes are carried out for speed and position using different error measurements, such as, integral square error, integral absolute error and root mean squared error. Comparison results show a superior performance of the hybrid fuzzy-logic-based controller when coping with parameter variations, and by reducing torque ripple, but the results are reversed when periodical torque disturbances are present. Finally, the speed controllers are implemented and evaluated physically in a testbed based on a brushless DC motor, with the control algorithms implemented on a dsPIC30F2010. The comparisons carried out for the speed controllers are consistent for both simulation and physical implementation

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    NASA Tech Briefs, March 1995

    Get PDF
    This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Science
    • …
    corecore