2,266 research outputs found

    Bathymetric Artifacts in Sea Beam Data: How to Recognize Them and What Causes Them

    Get PDF
    Sea Beam multibeam bathymetric data have greatly advanced understanding of the deep seafloor. However, several types of bathymetric artifacts have been identified in Sea Beam\u27s contoured output. Surveys with many overlapping swaths and digital recording on magnetic tape of Sea Beam\u27s 16 acoustic returns made it possible to evaluate actual system performance. The artifacts are not due to the contouring algorithm used. Rather, they result from errors in echo detection and processing. These errors are due to internal factors such as side lobe interference, bottom-tracking gate malfunctions, or external interference from other sound sources (e.g., 3.5 kHz echo sounders or seismic sound sources). Although many artifacts are obviously spurious and would be disregarded, some (particularly the omega effects described in this paper) are more subtle and could mislead the unwary observer. Artifacts observed could be mistaken for volcanic constructs, abyssal hill trends, hydrothermal mounds, slump blocks, or channels and could seriously affect volcanic, tectonic, or sedimentological interpretations. Misinterpretation of these artifacts may result in positioning errors when seafloor bathymetry is used to navigate the ship. Considering these possible geological misinterpretations, a clear understanding of the Sea Beam system\u27s capabilities and limitations is deemed essential

    Multi-touch Detection and Semantic Response on Non-parametric Rear-projection Surfaces

    Get PDF
    The ability of human beings to physically touch our surroundings has had a profound impact on our daily lives. Young children learn to explore their world by touch; likewise, many simulation and training applications benefit from natural touch interactivity. As a result, modern interfaces supporting touch input are ubiquitous. Typically, such interfaces are implemented on integrated touch-display surfaces with simple geometry that can be mathematically parameterized, such as planar surfaces and spheres; for more complicated non-parametric surfaces, such parameterizations are not available. In this dissertation, we introduce a method for generalizable optical multi-touch detection and semantic response on uninstrumented non-parametric rear-projection surfaces using an infrared-light-based multi-camera multi-projector platform. In this paradigm, touch input allows users to manipulate complex virtual 3D content that is registered to and displayed on a physical 3D object. Detected touches trigger responses with specific semantic meaning in the context of the virtual content, such as animations or audio responses. The broad problem of touch detection and response can be decomposed into three major components: determining if a touch has occurred, determining where a detected touch has occurred, and determining how to respond to a detected touch. Our fundamental contribution is the design and implementation of a relational lookup table architecture that addresses these challenges through the encoding of coordinate relationships among the cameras, the projectors, the physical surface, and the virtual content. Detecting the presence of touch input primarily involves distinguishing between touches (actual contact events) and hovers (near-contact proximity events). We present and evaluate two algorithms for touch detection and localization utilizing the lookup table architecture. One of the algorithms, a bounded plane sweep, is additionally able to estimate hover-surface distances, which we explore for interactions above surfaces. The proposed method is designed to operate with low latency and to be generalizable. We demonstrate touch-based interactions on several physical parametric and non-parametric surfaces, and we evaluate both system accuracy and the accuracy of typical users in touching desired targets on these surfaces. In a formative human-subject study, we examine how touch interactions are used in the context of healthcare and present an exploratory application of this method in patient simulation. A second study highlights the advantages of touch input on content-matched physical surfaces achieved by the proposed approach, such as decreases in induced cognitive load, increases in system usability, and increases in user touch performance. In this experiment, novice users were nearly as accurate when touching targets on a 3D head-shaped surface as when touching targets on a flat surface, and their self-perception of their accuracy was higher

    Super-Resolution Overlay in Multi-Projector Displays

    Get PDF
    A technique, associated system and computer executable program code, for projecting a superimposed image onto a target display surface under observation of one or more cameras. A projective relationship between each projector being used and the target display surface is determined using a suitable calibration technique. A component image for each projector is then estimated using the information from the calibration, and represented in the frequency domain. Each component image is estimated by: Using the projective relationship, determine a set of sub-sampled, regionally shifted images, represented in the frequency domain; each component image is then composed of a respective set of the sub-sampled, regionally shifted images. In an optimization step, the difference between a sum of the component images and a frequency domain representation of a target image is minimized to produce a second, or subsequent, component image for each projector

    Fast Correction of Tiled Display Systems on Planar Surfaces

    Full text link
    A method for fast colour and geometric correction of a tiled display system is presented in this paper. Such kind of displays are a common choice for virtual reality applications and simulators, where a high resolution image is required. They are the cheapest and more flexible alternative for large image generation but they require a precise geometric and colour correction. The purpose of the proposed method is to correct the projection system as fast as possible so in case the system needs to be recalibrated it doesn’t interfere with the normal operation of the simulator or virtual reality application. This technique makes use of a single conventional webcam for both geometric and photometric correction. Some previous assumptions are made, like planar projection surface and negligibleintra-projector colour variation and black-offset levels. If these assumptions hold true, geometric and photometric seamlessness can be achievedfor this kind of display systems. The method described in this paper is scalable for an undefined number of projectors and completely automatic

    3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes

    Get PDF
    Three-dimensional TV is expected to be the next revolution in the history of television. We implemented a 3D TV prototype system with real-time acquisition, transmission, and 3D display of dynamic scenes. We developed a distributed, scalable architecture to manage the high computation and bandwidth demands. Our system consists of an array of cameras, clusters of network-connected PCs, and a multi-projector 3D display. Multiple video streams are individually encoded and sent over a broadband network to the display. The 3D display shows high-resolution (1024 × 768) stereoscopic color images for multiple viewpoints without special glasses. We implemented systems with rear-projection and front-projection lenticular screens. In this paper, we provide a detailed overview of our 3D TV system, including an examination of design choices and tradeoffs. We present the calibration and image alignment procedures that are necessary to achieve good image quality. We present qualitative results and some early user feedback. We believe this is the first real-time end-to-end 3D TV system with enough views and resolution to provide a truly immersive 3D experience.Engineering and Applied Science

    Reproducing Reality with a High-Dynamic-Range Multi-Focal Stereo Display

    Get PDF
    • …
    corecore