1,950 research outputs found

    Singular structure of Toda lattices and cohomology of certain compact Lie groups

    Get PDF
    We study the singularities (blow-ups) of the Toda lattice associated with a real split semisimple Lie algebra g\mathfrak g. It turns out that the total number of blow-up points along trajectories of the Toda lattice is given by the number of points of a Chevalley group K(Fq)K({\mathbb F}_q) related to the maximal compact subgroup KK of the group Gˇ\check G with gˇ=Lie(Gˇ)\check{\mathfrak g}={\rm Lie}(\check G) over the finite field Fq{\mathbb F}_q. Here gˇ\check{\mathfrak g} is the Langlands dual of g{\mathfrak g}. The blow-ups of the Toda lattice are given by the zero set of the τ\tau-functions. For example, the blow-ups of the Toda lattice of A-type are determined by the zeros of the Schur polynomials associated with rectangular Young diagrams. Those Schur polynomials are the τ\tau-functions for the nilpotent Toda lattices. Then we conjecture that the number of blow-ups is also given by the number of real roots of those Schur polynomials for a specific variable. We also discuss the case of periodic Toda lattice in connection with the real cohomology of the flag manifold associated to an affine Kac-Moody algebra.Comment: 23 pages, 12 figures, To appear in the proceedings "Topics in Integrable Systems, Special Functions, Orthogonal Polynomials and Random Matrices: Special Volume, Journal of Computational and Applied Mathematics

    On the difficulty of finding spines

    Get PDF
    We prove that the set of symplectic lattices in the Siegel space hg\mathfrak{h}_g whose systoles generate a subspace of dimension at least 3 in R2g\mathbb{R}^{2g} does not contain any Sp(2g,Z)\mathrm{Sp}(2g,\mathbb{Z})-equivariant deformation retract of hg\mathfrak{h}_g
    • …
    corecore