230 research outputs found

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology

    Leveraging Resources on Anonymous Mobile Edge Nodes

    Get PDF
    Smart devices have become an essential component in the life of mankind. The quick rise of smartphones, IoTs, and wearable devices enabled applications that were not possible few years ago, e.g., health monitoring and online banking. Meanwhile, smart sensing laid the infrastructure for smart homes and smart cities. The intrusive nature of smart devices granted access to huge amounts of raw data. Researchers seized the moment with complex algorithms and data models to process the data over the cloud and extract as much information as possible. However, the pace and amount of data generation, in addition to, networking protocols transmitting data to cloud servers failed short in touching more than 20% of what was generated on the edge of the network. On the other hand, smart devices carry a large set of resources, e.g., CPU, memory, and camera, that sit idle most of the time. Studies showed that for plenty of the time resources are either idle, e.g., sleeping and eating, or underutilized, e.g. inertial sensors during phone calls. These findings articulate a problem in processing large data sets, while having idle resources in the close proximity. In this dissertation, we propose harvesting underutilized edge resources then use them in processing the huge data generated, and currently wasted, through applications running at the edge of the network. We propose flipping the concept of cloud computing, instead of sending massive amounts of data for processing over the cloud, we distribute lightweight applications to process data on users\u27 smart devices. We envision this approach to enhance the network\u27s bandwidth, grant access to larger datasets, provide low latency responses, and more importantly involve up-to-date user\u27s contextual information in processing. However, such benefits come with a set of challenges: How to locate suitable resources? How to match resources with data providers? How to inform resources what to do? and When? How to orchestrate applications\u27 execution on multiple devices? and How to communicate between devices on the edge? Communication between devices at the edge has different parameters in terms of device mobility, topology, and data rate. Standard protocols, e.g., Wi-Fi or Bluetooth, were not designed for edge computing, hence, does not offer a perfect match. Edge computing requires a lightweight protocol that provides quick device discovery, decent data rate, and multicasting to devices in the proximity. Bluetooth features wide acceptance within the IoT community, however, the low data rate and unicast communication limits its use on the edge. Despite being the most suitable communication protocol for edge computing and unlike other protocols, Bluetooth has a closed source code that blocks lower layer in front of all forms of research study, enhancement, and customization. Hence, we offer an open source version of Bluetooth and then customize it for edge computing applications. In this dissertation, we propose Leveraging Resources on Anonymous Mobile Edge Nodes (LAMEN), a three-tier framework where edge devices are clustered by proximities. On having an application to execute, LAMEN clusters discover and allocate resources, share application\u27s executable with resources, and estimate incentives for each participating resource. In a cluster, a single head node, i.e., mediator, is responsible for resource discovery and allocation. Mediators orchestrate cluster resources and present them as a virtually large homogeneous resource. For example, two devices each offering either a camera or a speaker are presented outside the cluster as a single device with both camera and speaker, this can be extended to any combination of resources. Then, mediator handles applications\u27 distribution within a cluster as needed. Also, we provide a communication protocol that is customizable to the edge environment and application\u27s need. Pushing lightweight applications that end devices can execute over their locally generated data have the following benefits: First, avoid sharing user data with cloud server, which is a privacy concern for many of them; Second, introduce mediators as a local cloud controller closer to the edge; Third, hide the user\u27s identity behind mediators; and Finally, enhance bandwidth utilization by keeping raw data at the edge and transmitting processed information. Our evaluation shows an optimized resource lookup and application assignment schemes. In addition to, scalability in handling networks with large number of devices. In order to overcome the communication challenges, we provide an open source communication protocol that we customize for edge computing applications, however, it can be used beyond the scope of LAMEN. Finally, we present three applications to show how LAMEN enables various application domains on the edge of the network. In summary, we propose a framework to orchestrate underutilized resources at the edge of the network towards processing data that are generated in their proximity. Using the approaches explained later in the dissertation, we show how LAMEN enhances the performance of applications and enables a new set of applications that were not feasible

    Point-to-Multipoint Services on Fifth-Generation Mobile Networks

    Full text link
    [ES] Esta disertación cubre el estado del arte en LTE eMBMS Release 14, también conocido como Enhanced Television Services (ENTV). ENTV trajo un conjunto de mejoras, tanto a nivel radio como a nivel de núcleo, que transformó a eMBMS en un estándar de televisión terrestre completo. La última versión de esta tecnología se denomina LTE-based 5G Broadcast; pero no usa New Radio ni el núcleo 5G. Para proveer una solución nativa 5G de servicios punto-a-multipunto, hubo investigación en entornos acad\'emicos y colaboraciones público-privada. La iniciativa más notable en este aspecto fue el proyecto del Horizon 2020 5G-Xcast, que transcurrió de 2017 a 2019. 5G-Xcast produjo varias soluciones a nivel de arquitectura, desde la perspectiva de provisión de contenidos, nuevas funciones de red interoperables con el núcleo 5G, hasta modificaciones a la interfaz aire basada en New Radio. Los hallazgos del proyecto están descritos en esta tesis. La tesis incluye dos ejemplos de eMBMS aplicados a verticales diferentes, una para el uso de eMBMS en entornos industriales, y otra presentando eMBMS como un sistema SAP. Incluir servicios punto-a-multipunto como un modo adicional celular trae algunos desafíos, como ya mostró la estandarización de eMBMS: las redes de radiodifusión terrestre y las redes celulares son muy distintas entre ellas. Encontrar una forma de onda viable para ambas infraestructuras es complejo. Esta tesis ofrece un punto de vista distinto al problema: un escenario de colaboración entre cadenas televisivas y operadores móviles, donde la infraestructura de radiodifusión y móvil son compartidas. Este concepto se ha definido como Convergence of Terrestrial and Mobile Networks. Las tecnologías elegidas para converger son ATSC 3.0 y 5G, usando el Advanced Traffic Steering, Switching and Splitting (ATSSS). ATSSS está compuesto de una serie de procedimientos, interfaces, funciones de red, para permitir el uso compartido de un acceso 3GPP con uno non-3GPP, como Wi-Fi. Sin embargo, el uso de ATSSS para juntar radiodifusión y celular no es trivial, ya que ATSSS no fue dise\~{n}ado para enlaces radio unidireccionales como ATSC 3.0. Estas limitaciones son descritas en detalle, y una propuesta para solventarlas tambi\'en está incluida. La solución se basa en Quick UDP Internet Connections (QUIC), y se usa como ejemplo para la provisión de Convergent Services (File Repair y Video Offloading). La tesis concluye con una descripción de Release 17 5MBS, con los nuevos conceptos introducidos. 5MBS es capaz de cambiar entre unicast, multicast y broadcast; dependiendo del servicio, la ubicación geográfica de los usuarios, y las capacidades de la infraestructura móvil involucradas. Para evaluar 5MBS, se ha realizado un estudio de prestaciones, basado en comunicaciones multicast dentro del núcleo de red 5G. Este prototipo 5MBS forma parte del laboratorio VLC Campus 5G, y utiliza el software comercial Open5GCore como base del desarrollo. El modelo de sistema para la experimentación esta formado por un servidor de vídeo, que se conecta al Open5GCore y a las funciones de red mejoradas con funcionalidades 5MBS. Estas funciones de red envían el contenido mediante punto-a-multipunto a un entorno radio y terminales simulados. Los resultados obtenidos resaltan el objetivo principal de la tesis: las comunicaciones punto-a-multipunto son una solución escalable para el envío de contenido multimedia en directo.[CA] Aquesta dissertació cobreix capdavanter en LTE eMBMS Release 14, també conegut com Enhanced Television Services (ENTV). ENTV va portar un conjunt de millores, tant a nivell de ràdio com a nivell de nucli, que va transformar el eMBMS en un estàndard de televisió terrestre complet. La última versió d'aquesta tecnologia es denomina LTE-based 5G Broadcast; però no fa servir New Ràdio ni el nucli 5G. Per a proveir una solució nativa 5G de serveis punt-a-multipunt, va haver-hi investigació en entorns acadèmics i col·laboracions pública i privada. La iniciativa més notable en aquest aspecte va ser el projecte del Horizon 2020 5G-Xcast, que va transcórrer del 2017 a 2019. 5G-Xcast va produir diverses solucions a nivell d'arquitectura, des de la perspectiva de provisió de continguts, noves funcions de xarxa interoperables amb el nucli 5G, fins a modificacions a la interfície aire basada en New Radio. Les troballes del projecte estan descrits en aquesta tesi. La tesi inclou dos exemples de eMBMS aplicats a verticals diferents, una per a l'ús de eMBMS en entorns industrials, i una altra presentant eMBMS com un sistema SAP. Incloure serveis punt-a-multipunt com una manera addicional cel·lular duu alguns desafiaments, com ja va mostrar l'estandardització de eMBMS: les xarxes de radiodifusió terrestre i les xarxes cel·lulars són molt diferents entre elles. Trobar una forma d'ona viable per a totes dues infraestructures és complex. Aquesta tesi ofereix un punt de vista diferent al problema: un escenari de col·laboració entre cadenes televisives i operadors mòbils, on la infraestructura de radiodifusió i mòbil són compartides. Aquest concepte s'ha definit com Convergence of Terrestrial and Mobile Networks. Les tecnologies triades per a convergir són ATSC 3.0 i 5G, usant el Advanced Traffic Steering, Switching and Splitting (ATSSS). ATSSS està compost d'una sèrie de procediments, interfícies, funcions de xarxa, per a permetre l'ús compartit d'un accés 3GPP amb un non-3GPP, com a Wi-Fi. No obstant això, l'ús de ATSSS per a adjuntar radiodifusió i cel·lular no és trivial, ja que ATSSS no va ser dissenyada per a per a enllaços ràdio unidireccionals com ATSC 3.0. Aquestes limitacions són descrites detalladament, i una proposta per a solucionar-les també està inclosa. La solució es basa en Quick UDP Internet Connections (QUIC), i s'usa com a exemple per a la provisió de Convergent Services (File Repair i Vídeo Offloading). La tesi conclou amb una descripció de Release 17 5MBS, amb els nous conceptes introduïts. 5MBS és capaç de canviar entre unicast, multicast i broadcast; depenent del servei, la ubicació geogràfica dels usuaris, i les capacitats de la infraestructura mòbil involucrades. Per a avaluar 5MBS, s'ha realitzat un estudi de prestacions, basat en comunicacions multicast dins del nucli de xarxa 5G. Aquest prototip 5MBS forma part del laboratori VLC Campus 5G, i utilitza el programari comercial Open5GCore com a base del desenvolupament. El model de sistema per a l'experimentació està format per un servidor de vídeo, que es connecta al Open5GCore i a les funcions de xarxa millorades amb funcionalitats 5MBS. Aquestes funcions de xarxa envien el contingut mitjançant punt-a-multipunt a un entorn ràdio i terminals simulats. Els resultats obtinguts ressalten l'objectiu principal de la tesi: les comunicacions punt-a-multipunt són una solució escalable per a l'enviament de contingut multimèdia en directe.[EN] This dissertation covers the state-of-the-art in LTE eMBMS Release 14, also known as Enhanced Television Services (ENTV). ENTV provided a suite of radio and core enhancements that made eMBMS into a viable terrestrial broadcast standard. The latest iteration of this technology is known as LTE-based 5G Broadcast; even though it is not New Radio or 5G Core based. To bridge this gap, research efforts by academia, public and private enterprises evaluated how to provide a 5G-based solution for point-to-multipoint services. The most notable effort in this regard is the Horizon 2020 project 5G-Xcast, which ran from 2017 to 2019. 5G-Xcast provided several architectural solutions, from the content delivery perspective down to air interface specifics; providing new waveforms based on New Radio and Network Functions interoperable with a Release 15 5G Core. The findings are summarized in this thesis. Two examples of eMBMS applied to different verticals are included in the thesis, one for the use of eMBMS in industrial environments, and the other using eMBMS as a PWS technology. Providing point-to-multipoint services as another cellular service poses some problems, as the standardization process of eMBMS showed: the broadcast infrastructure is different than the cellular one. Having a waveform that is suited for both scenarios is a difficult endeavour. The thesis provides a new perspective into this problem: Having existing Terrestrial Broadcast standards and infrastructure be the point-to-multipoint solution of 5G, where mobile operators and broadcasters collaborate together. This is defined in the dissertation as Convergence of Terrestrial and Mobile Networks. The technologies chosen to be converged together were ATSC 3.0 and 5G; using the existing Release 16 framework known as Advanced Traffic Steering, Switching and Splitting (ATSSS). ATSSS is a series of procedures, interfaces, new Network Functions, to allow the joint use of a 3GPP Access Network alongside a non-3GPP one, like Wi-Fi. However, the use of ATSSS for cellular plus broadcast brings challenges, as the ATSSS technology was not designed to be used with a unidirectional access network like ATSC 3.0. These limitations are described in detail, and an architectural proposal that overcomes the limitations is proposed. This solution is based on Quick UDP Internet Connections (QUIC), and how to provide Convergent Services (i.e File Repair and Video Offloading) is shown. The thesis concludes with a description of Release 17 5MBS, including the new concepts introduced. 5MBS features the capacity of switching between unicast, multicast and broadcast; depending on the service addressed, the geographical location of the users, and the capability of the RAN infrastructure targeted. In order to evaluate 5MBS, a performance study of the use of multicast inside the 5G Core has been carried out. The 5MBS prototype was developed as part of the VLC Campus 5G laboratory, using the commercial software Open5GCore which provides the libraries and Network Functions to deploy your own 5G Private Network in testing environments. The system model of the experiment is formed by a video server, connected to the Open5GCore and the 5MBS enhanced functions; which will deliver the content to an emulated RAN environment hosting virtual gNBs and devices. The results obtained reinforce the objective of the thesis, positioning point-to-multipoint as a scalable way to deliver live content.Research projects: 5G-Xcast: Broadcast and Multicast Communication Enablers for the Fifth-Generation of Wireless Systems (H2020 No 761498); 5G-TOURS: SmarT mObility, media and e-health for toURists and citizenS (H2020 No 856950); FUDGE-5G: FUlly DisinteGrated private nEtworks for 5G verticals (H2020 No 957242).Barjau Estevan, CS. (2022). Point-to-Multipoint Services on Fifth-Generation Mobile Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19140

    The Use of Machine Learning Techniques for Optimal Multicasting in 5G NR Systems

    Get PDF
    Multicasting is a key feature of cellular systems, which provides an efficient way to simultaneously disseminate a large amount of traffic to multiple subscribers. However, the efficient use of multicast services in fifth-generation (5G) New Radio (NR) is complicated by several factors, including inherent base station (BS) antenna directivity as well as the exploitation of antenna arrays capable of creating multiple beams concurrently. In this work, we first demonstrate that the problem of efficient multicasting in 5G NR systems can be formalized as a special case of multi-period variable cost and size bin packing problem (BPP). However, the problem is known to be NP-hard, and the solution time is practically unacceptable for large multicast group sizes. To this aim, we further develop and test several machine learning alternatives to address this issue. The numerical analysis shows that there is a trade-off between accuracy and computational complexity for multicast grouping when using decision tree-based algorithms. A higher number of splits offers better performance at the cost of an increased computational time. We also show that the nature of the cell coverage brings three possible solutions to the multicast grouping problem: (i) small-range radii are characterized by a single multicast subgroup with wide beamwidth, (ii) middle-range deployments have to be solved by employing the proposed algorithms, and (iii) BS at long-range radii sweeps narrow unicast beams to serve multicast users.acceptedVersionPeer reviewe

    LVMM: The Localized Vehicular Multicast Middleware - a Framework for Ad Hoc Inter-Vehicles Multicast Communications

    Get PDF
    This thesis defines a novel semantic for multicast in vehicular ad hoc networks (VANETs) and it defines a middleware, the Localized Vehicular Multicast Middleware (LVMM) that enables minimum cost, source-based multicast communications in VANETs. The middleware provides support to find vehicles suitable to sustain multicast communications, to maintain multicast groups, and to execute a multicast routing protocol, the Vehicular Multicast Routing Protocol (VMRP), that delivers messages of multicast applications to all the recipients utilizing a loop-free, minimum cost path from each source to all the recipients. LVMM does not require a vehicle to know all other members: only knowledge of directly reachable nodes is required to perform the source-based routing
    corecore