231 research outputs found

    Dynamic QoS Management for Ethernet-based Video Surveillance Systems

    Get PDF
    This project consists of a video surveillance system with an integrated quality of service (QoS) manager that operates online, constantly monitoring and setting the QoS parameters.This manager has two components: one that manages the network bandwidth, distributing it through the cameras according to their needs; and another that controls the compression applied by the cameras to each frame in order to use the bandwidth efficiently. The project will focus mainly on the first, which is built on Linux Traffic Control, a Linux service that allows the user to configure traffic scheduling and shaping

    Multimedia Streaming Service Adaptation in IMS Networks

    Get PDF

    Multimedia streaming adaptation IMS-networks

    Get PDF
    Introduction Multimedia services such as video, gaming and music marked the close of the last century and have become inextricably linked with our lives in the current century. The success and popularity of these services was fuelled by the explosive expansion of the Internet and the furious penetration of broadband networks. In particular, the use of multimedia streaming services on portable devices has been popular whenever both the content and the perceived delivery quality have met the expectations of end users. This chapter of the book does not address content aspects of multimedia streaming services. Such matters are left to media gurus and other researchers. Rather, this chapter focuses on the delivery quality of multimedia streaming services. Particular attention is paid to quality adaptation techniques intended to improve end users' experience of such services. Our scope includes heterogeneous networks and devices. The solutions presented are applicable to the telecommunications industry

    Rate Control for VBR Video Coders in Broadband Networks

    Get PDF

    Network-driven handover in 5G

    Get PDF
    Currently, users’ expectations regarding technological performance are constantly increasing. An example of this is the growing consumption of multimedia content via the Internet. Multimedia applications with a variable number of users/requests have variable demand over time that may expose the limitation of the network channels. This may cause a problem of demand mobility generated by the service/application. Each generation of mobile networks has specific handover processes, which in the case of 4G can be controlled according to the applications requirements, with the possibility of multiconnectivity. This process was massified in 5G. The main contribution of this dissertation is the development and analysis of decision models for controlling the video streaming and user association to a BS in the network architecture. The scenario considered refers to a football stadium with multiple points of view – video streams – that each spectator can request to view on their cell phone or tablet. The developed simulator models the stadium scenario using a combination of services, which occur on the 5G network. Vertical handover generated by the network is used,aidedbynetworkslicing. Thenetworkslicingactsinthepartofthebandwidthdivision between the different antennas and allows the throughput of the different broadcast (FeMBMS)channelsto becontrolledbytheservice -theradionetworkcapacitylimitsthe throughput. The results obtained in a case of 80000 spectators who select different beams over time, considering8basestations(BS),showthatthequalityofexperienceishighonlywhenthe handover and the control of beam diffusion by BS are managed according to the application requirements. The network recovers from huge peaks by handling as many requests at once as possible. Instead of the user only getting the steam in a good quality or not getting it at all, the network performs a best-effort solution of downgrading the quality of multicasting in order to expend less resources with the same quantity of requests. The network state is taken into consideration. Although there are load peaks on the network, it is never congested.Atualmente, as expectativas dos utilizadores em relação à capacidade tecnológica não param de aumentar. Exemplo disso é o crescente consumo de conteúdo multimédia através da Internet. Aplicações multimédia com número variável de utilizadores e pedidos têm um fluxo de serviço variável ao longo do tempo. Esta variância pode expor a limitação de canais de rede, que consequentemente pode causar um problema de mobilidade gerado pelo serviço/aplicação. Cada geração de redes móveis possui processos de handover de utilizadores específicos, que no caso da geração 4G passou a ser controlado em função das aplicações, com a possibilidade de multiconectividade. Este processo foi massificado no 5G. A principal contribuição desta dissertação é o desenvolvimento e análise de modelos de decisão para controlar a difusão de vídeo e a associação de utilizadores à rede rádio na arquitetura da rede. O cenário considerado reflete um estádio de futebol com vários pontos de vista - diferentes feixes de vídeo - que cada espectador pode solicitar e visualizar no seu telemóvel ou tablet. O simulador desenvolvido modela o cenário do estádio usando uma combinação de serviços, que ocorrem na rede 5G. É usado handover vertical gerado pela rede auxiliado por network slicing que atua na parte da divisão da largura de banda entre as diferentes antenas e permite que a taxa de débito dos diferentes canais de difusão (FeMBMS) seja controlada pelo serviço - a capacidade da rede rádio limita a taxa de transferência. Os resultados obtidos no caso de 80000 espectadores que selecionam diferentes feixes ao longo do tempo, considerando 8 estações base (BS), mostram que a qualidade de experiência somente é elevada quando o handover e o controlo da difusão de feixes pelas BS são geridos de acordo com os requisitos da aplicação. A rede recupera a estabilidade após enormes picos de transferência gerindo os seus recursos. Em vez do utilizador ser prejudicado na totalidade quando a rede não tem recursos e ser privado de obter serviço, é utilizado um processo alternativo em que a rede diminui a qualidade de multicasting, gastando menos recursos com a mesma quantidade de pedidos. O estado da rede é sempre tido em consideração - embora hajam picos de carga na rede, esta nunca fica congestionada

    Cloud-gaming:Analysis of Google Stadia traffic

    Full text link
    Interactive, real-time, and high-quality cloud video games pose a serious challenge to the Internet due to simultaneous high-throughput and low round trip delay requirements. In this paper, we investigate the traffic characteristics of Stadia, the cloud-gaming solution from Google, which is likely to become one of the dominant players in the gaming sector. To do that, we design several experiments, and perform an extensive traffic measurement campaign to obtain all required data. Our first goal is to gather a deep understanding of Stadia traffic characteristics by identifying the different protocols involved for both signalling and video/audio contents, the traffic generation patterns, and the packet size and inter-packet time probability distributions. Then, our second goal is to understand how different Stadia games and configurations, such as the video codec and the video resolution selected, impact on the characteristics of the generated traffic. Finally, we aim to evaluate the ability of Stadia to adapt to different link capacity conditions, including those cases where the capacity drops suddenly. Our results and findings, besides illustrating the characteristics of Stadia traffic, are also valuable for planning and dimensioning future networks, as well as for designing new resource management strategies

    An Improved Active Network Concept and Architecture for Distributed and Dynamic Streaming Multimedia Environments with Heterogeneous Bandwidths

    Get PDF
    A problem in todays Internet infrastructure may occur when a streaming multimedia application is to take place. The information content of video and audio signals that contain moving or changing scenes may simply be too great for Internet clients with low bandwidth capacity if no adaptation is performed. In order to satisfactorily reach clients with various bandwidth capacities some works such as receiver-driven multicast and resilient overlay networks (RON) have been developed. However these efforts mainly call for modification on router level management or place additional layer to the Internet structure, which is not recommended in the nearest future due to the highly acceptance level and widely utilization of the current Internet structure, and the lengthy and tiring standardization process for a new structure or modification to be accepted. We have developed an improved active network approach for distributed and dynamic streaming multimedia environment with heterogeneous bandwidth, such as the case of the Internet. Friendly active network system (FANS) is a sample of our approach. Adopting application level active network (ALAN) mechanism, FANS participants and available media are referred through its universal resource locator (url). The system intercepts traffic flowing from source to destination and performs media post-processing at an intermediate peer. The process is performed at the application level instead of at the router level, which was the original approach of active networks. FANS requires no changes in router level management and puts no additional requirement to the current Internet architecture and, hence, instantly applicable. In comparison with ALAN, FANS possesses two significant differences. From the system overview, ALAN requires three minimum elements: clients, servers, and dynamic proxy servers. FANS, on the other hand, unifies the functionalities of those three elements. Each of peers in FANS is a client, an intermediate peer, and a media server as well. Secondly, FANS members tracking system dynamically detects the existence of a newly joined computers or mobile device, given its url is available and announced. In ALAN, the servers and the middle nodes are priori known and, hence, static. The application level approach and better performance characteristics distinguished also our work with another similar work in this field, which uses router level approach. The approach offers, in general, the following improvements: FANS promotes QoS fairness, in which clients with lower bandwidth are accommodated and receive better quality of service FANS introduces a new algorithm to determine whether or not the involvement of intermediate peer(s) to perform media post-processing enhancement services is necessary. This mechanism is important and advantageous due to the fact that intermediate post-processing increases the delay and, therefore, should only be employed selectively. FANS considers the size of media data and the capacity of clients bandwidth as network parameters that determine the level of quality of service offered. By employing the above techniques, our experiments with the Internet emulator show that our approach improves the reliability of streaming media applications in such environment

    SIP Controlled Admission and Preemption

    Get PDF
    This framework defines a method of providing Explicit Congestion Control to real-time inelastic traffic like voice and video through the use of session admission control and preemption mechanisms. This approach uses the Pre-Congestion Notification Marking (PCN) [1]\ud mechanism. PCN marking is deployed in routers to measure and convey two levels of onset of congestion with the SIP controlled endpoints responding to the marking. This approach is different from what is defined in An edge-to-edge Deployment Model for Pre-Congestion Notification [3], as here the admission and preemption control function resides in the application (either in the endpoint or the application server that controls the endpoint. This framework is focused on using Session Initiated Protocol (SIP) as the application signaling protocol but other application signaling protocols could be extended for this purpose.\u

    Adaptive Bitrate Streaming in Cloud Gaming

    Get PDF
    Cloud gaming streams games as video from a server to a client device making it susceptible to network congestion. Adaptive bitrate streaming estimates network capacity and sets encoding parameters to avoid exceeding the bandwidth of the connection. BBR is a congestion control algorithm as an alternative to current loss-based congestion control. We designed and implemented a bitrate adaptation heuristic based on BBR into GamingAnywhere, an open source cloud gaming platform. We conducted a user study and did objective analysis comparing our modified version to the original. Through our results, we found that our adaptive system was less challenging for players and improved retention rates and that there was no statistically significant difference in visual quality from objective testing
    corecore