2,008 research outputs found

    The complexity of counting edge colorings and a dichotomy for some higher domain Holant problems

    Get PDF
    We show that an effective version of Siegel’s Theorem on finiteness of integer solutions and an application of elementary Galois theory are key ingredients in a complexity classification of some Holant problems. These Holant problems, denoted by Holant(f), are defined by a symmetric ternary function f that is invariant under any permutation of the κ ≥ 3 domain elements. We prove that Holant(f) exhibits a complexity dichotomy. This dichotomy holds even when restricted to planar graphs. A special case of this result is that counting edge κ-colorings is #P-hard over planar 3-regular graphs for κ ≥ 3. In fact, we prove that counting edge κ-colorings is #P-hard over planar r-regular graphs for all κ ≥ r ≥ 3. The problem is polynomial-time computable in all other parameter settings. The proof of the dichotomy theorem for Holant(f) depends on the fact that a specific polynomial p(x, y) has an explicitly listed finite set of integer solutions, and the determination of the Galois groups of some specific polynomials. In the process, we also encounter the Tutte polynomial, medial graphs, Eulerian partitions, Puiseux series, and a certain lattice condition on the (logarithm of) the roots of polynomials.

    Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

    Get PDF
    We give a fully polynomial-time approximation scheme (FPTAS) to count the number of independent sets on almost every Delta-regular bipartite graph if Delta >= 53. In the weighted case, for all sufficiently large integers Delta and weight parameters lambda = Omega~ (1/(Delta)), we also obtain an FPTAS on almost every Delta-regular bipartite graph. Our technique is based on the recent work of Jenssen, Keevash and Perkins (SODA, 2019) and we also apply it to confirm an open question raised there: For all q >= 3 and sufficiently large integers Delta=Delta(q), there is an FPTAS to count the number of q-colorings on almost every Delta-regular bipartite graph

    Sidorenko's conjecture, colorings and independent sets

    Get PDF
    Let hom(H,G)\hom(H,G) denote the number of homomorphisms from a graph HH to a graph GG. Sidorenko's conjecture asserts that for any bipartite graph HH, and a graph GG we have hom(H,G)v(G)v(H)(hom(K2,G)v(G)2)e(H),\hom(H,G)\geq v(G)^{v(H)}\left(\frac{\hom(K_2,G)}{v(G)^2}\right)^{e(H)}, where v(H),v(G)v(H),v(G) and e(H),e(G)e(H),e(G) denote the number of vertices and edges of the graph HH and GG, respectively. In this paper we prove Sidorenko's conjecture for certain special graphs GG: for the complete graph KqK_q on qq vertices, for a K2K_2 with a loop added at one of the end vertices, and for a path on 33 vertices with a loop added at each vertex. These cases correspond to counting colorings, independent sets and Widom-Rowlinson colorings of a graph HH. For instance, for a bipartite graph HH the number of qq-colorings ch(H,q)\textrm{ch}(H,q) satisfies ch(H,q)qv(H)(q1q)e(H).\textrm{ch}(H,q)\geq q^{v(H)}\left(\frac{q-1}{q}\right)^{e(H)}. In fact, we will prove that in the last two cases (independent sets and Widom-Rowlinson colorings) the graph HH does not need to be bipartite. In all cases, we first prove a certain correlation inequality which implies Sidorenko's conjecture in a stronger form.Comment: Two references added and Remark 2.1 is expande

    Manifolds associated with (Z2)n(Z_2)^n-colored regular graphs

    Full text link
    In this article we describe a canonical way to expand a certain kind of (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graphs into closed nn-manifolds by adding cells determined by the edge-colorings inductively. We show that every closed combinatorial nn-manifold can be obtained in this way. When n3n\leq 3, we give simple equivalent conditions for a colored graph to admit an expansion. In addition, we show that if a (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graph admits an nn-skeletal expansion, then it is realizable as the moment graph of an (n+1)(n+1)-dimensional closed (Z2)n+1(\mathbb Z_2)^{n+1}-manifold.Comment: 20 pages with 9 figures, in AMS-LaTex, v4 added a new section on reconstructing a space with a (Z2)n(Z_2)^n-action for which its moment graph is a given colored grap
    corecore