43 research outputs found

    The umbilical cord of finite model theory

    Full text link
    Model theory was born and developed as a part of mathematical logic. It has various application domains but is not beholden to any of them. A priori, the research area known as finite model theory would be just a part of model theory but didn't turn out that way. There is one application domain -- relational database management -- that finite model theory had been beholden to during a substantial early period when databases provided the motivation and were the main application target for finite model theory. Arguably, finite model theory was motivated even more by complexity theory. But the subject of this paper is how relational database theory influenced finite model theory. This is NOT a scholarly history of the subject with proper credits to all participants. My original intent was to cover just the developments that I witnessed or participated in. The need to make the story coherent forced me to cover some additional developments.Comment: To be published in the Logic in Computer Science column of the February 2023 issue of the Bulletin of the European Association for Theoretical Computer Scienc

    On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

    Get PDF
    During the last decades, a lot of effort was put into identifying decidable fragments of first-order logic. Such efforts gave birth, among the others, to the two-variable fragment and the guarded fragment, depending on the type of restriction imposed on formulae from the language. Despite the success of the mentioned logics in areas like formal verification and knowledge representation, such first-order fragments are too weak to express even the simplest statistical constraints, required for modelling of influence networks or in statistical reasoning. In this work we investigate the extensions of these classical decidable logics with percentage quantifiers, specifying how frequently a formula is satisfied in the indented model. We show, surprisingly, that all the mentioned decidable fragments become undecidable under such extension, sharpening the existing results in the literature. Our negative results are supplemented by decidability of the two-variable guarded fragment with even more expressive counting, namely Presburger constraints. Our results can be applied to infer decidability of various modal and description logics, e.g. Presburger Modal Logics with Converse or ALCI, with expressive cardinality constraints

    On the Complexity of Team Logic and its Two-Variable Fragment

    Full text link
    We study the logic FO(~), the extension of first-order logic with team semantics by unrestricted Boolean negation. It was recently shown axiomatizable, but otherwise has not yet received much attention in questions of computational complexity. In this paper, we consider its two-variable fragment FO2(~) and prove that its satisfiability problem is decidable, and in fact complete for the recently introduced non-elementary class TOWER(poly). Moreover, we classify the complexity of model checking of FO(~) with respect to the number of variables and the quantifier rank, and prove a dichotomy between PSPACE- and ATIME-ALT(exp, poly)-completeness. To achieve the lower bounds, we propose a translation from modal team logic MTL to FO2(~) that extends the well-known standard translation from modal logic ML to FO2. For the upper bounds, we translate to a fragment of second-order logic

    Aperiodic tilings and entropy

    Full text link
    In this paper we present a construction of Kari-Culik aperiodic tile set - the smallest known until now. With the help of this construction, we prove that this tileset has positive entropy. We also explain why this result was not expected

    On the Complexity of Team Logic and Its Two-Variable Fragment

    Get PDF
    We study the logic FO(~), the extension of first-order logic with team semantics by unrestricted Boolean negation. It was recently shown to be axiomatizable, but otherwise has not yet received much attention in questions of computational complexity. In this paper, we consider its two-variable fragment FO^2(~) and prove that its satisfiability problem is decidable, and in fact complete for the recently introduced non-elementary class TOWER(poly). Moreover, we classify the complexity of model checking of FO(~) with respect to the number of variables and the quantifier rank, and prove a dichotomy between PSPACE- and ATIME-ALT(exp, poly)-complete fragments. For the lower bounds, we propose a translation from modal team logic MTL to FO^2(~) that extends the well-known standard translation from modal logic ML to FO^2. For the upper bounds, we translate FO(~) to fragments of second-order logic with PSPACE-complete and ATIME-ALT(exp, poly)-complete model checking, respectively

    A Bounded Domain Property for an Expressive Fragment of First-Order Linear Temporal Logic

    Get PDF
    First-Order Linear Temporal Logic (FOLTL) is well-suited to specify infinite-state systems. However, FOLTL satisfiability is not even semi-decidable, thus preventing automated verification. To address this, a possible track is to constrain specifications to a decidable fragment of FOLTL, but known fragments are too restricted to be usable in practice. In this paper, we exhibit various fragments of increasing scope that provide a pertinent basis for abstract specification of infinite-state systems. We show that these fragments enjoy the Bounded Domain Property (any satisfiable FOLTL formula has a model with a finite, bounded FO domain), which provides a basis for complete, automated verification by reduction to LTL satisfiability. Finally, we present a simple case study illustrating the applicability and limitations of our results

    Complexity Classifications via Algebraic Logic

    Get PDF
    Complexity and decidability of logics is an active research area involving a wide range of different logical systems. We introduce an algebraic approach to complexity classifications of computational logics. Our base system GRA, or general relation algebra, is equiexpressive with first-order logic FO. It resembles cylindric algebra but employs a finite signature with only seven different operators, thus also giving a very succinct characterization of the expressive capacities of first-order logic. We provide a comprehensive classification of the decidability and complexity of the systems obtained by limiting the allowed sets of operators of GRA. We also discuss variants and extensions of GRA, and we provide algebraic characterizations of a range of well-known decidable logics

    Conjunctive Grammars, Cellular Automata and Logic

    Get PDF
    The expressive power of the class Conj of conjunctive languages, i.e. languages generated by the conjunctive grammars of Okhotin, is largely unknown, while its restriction LinConj to linear conjunctive grammars equals the class of languages recognized by real-time one-dimensional one-way cellular automata. We prove two weakened versions of the open question Conj ?? RealTime1CA, where RealTime1CA is the class of languages recognized by real-time one-dimensional two-way cellular automata: 1) it is true for unary languages; 2) Conj ? RealTime2OCA, i.e. any conjunctive language is recognized by a real-time two-dimensional one-way cellular automaton. Interestingly, we express the rules of a conjunctive grammar in two Horn logics, which exactly characterize the complexity classes RealTime1CA and RealTime2OCA

    Algoritm Deciding Delected Subclasses of First-order Predicate Logic Formulas

    Get PDF
    Problémem v predikátové logice je, že logická pravdivost formulí je nerozhodnutelná. To znamená, že neexistuje všeobecný algoritmus, který by vždy s absolutní jistotou rozhodnul, zda je daná formule predikátové logiky tautologie, kontradikce nebo jen splnitelná. Avšak existují velké oblasti, kde tento problém je úspěšně zvládnutý a těmi jsou rozhodnutelné podtřídy. Tyto podtřídy byly diplomovou prací Radima Vašíčka z roku 2012 s názvem "Rozhodnutelné podtřídy formulí predikátové logiky 1. řádu" představeny a dokázány. Tato práce postupně tyto podtřídy představuje. Navrhne a implementuje algoritmus pro rozhodování. Výsledkem je program, který na vstupu přijme formuli predikátové logiky, ověří, zda vyhovuje některé z podtříd a za pomocí implementace důkazového kalkulu, tuto podtřídu rozhodne.The problem in predicate logic is that the logical truthfulness of formulas is undecidable. This means that there is no general algorithm that should always be decided with absolute certainty whether a given formula of predicate logic tautology, contradiction or only achievable. However, there are large areas where the problem is successfully mastered and those are decidable subclasses. These subclasses have been introduced in the diploma thesis of Radim Vasicek from 2012 called "Decidable subclass of predicate logic formulas of the first order." This thesis presents gradually these subclasses. Designs and implements an algorithm for decision making. The result is a program that accepts input formula of predicate logic verifies that meets some of the subclasses and by implementing proving calculus, this subclass decides.460 - Katedra informatikyvelmi dobř

    Monadic Decomposability of Regular Relations

    Get PDF
    Monadic decomposibility - the ability to determine whether a formula in a given logical theory can be decomposed into a boolean combination of monadic formulas - is a powerful tool for devising a decision procedure for a given logical theory. In this paper, we revisit a classical decision problem in automata theory: given a regular (a.k.a. synchronized rational) relation, determine whether it is recognizable, i.e., it has a monadic decomposition (that is, a representation as a boolean combination of cartesian products of regular languages). Regular relations are expressive formalisms which, using an appropriate string encoding, can capture relations definable in Presburger Arithmetic. In fact, their expressive power coincide with relations definable in a universal automatic structure; equivalently, those definable by finite set interpretations in WS1S (Weak Second Order Theory of One Successor). Determining whether a regular relation admits a recognizable relation was known to be decidable (and in exponential time for binary relations), but its precise complexity still hitherto remains open. Our main contribution is to fully settle the complexity of this decision problem by developing new techniques employing infinite Ramsey theory. The complexity for DFA (resp. NFA) representations of regular relations is shown to be NLOGSPACE-complete (resp. PSPACE-complete)
    corecore