535 research outputs found

    The Church Problem for Countable Ordinals

    Full text link
    A fundamental theorem of Buchi and Landweber shows that the Church synthesis problem is computable. Buchi and Landweber reduced the Church Problem to problems about &#969;-games and used the determinacy of such games as one of the main tools to show its computability. We consider a natural generalization of the Church problem to countable ordinals and investigate games of arbitrary countable length. We prove that determinacy and decidability parts of the Bu}chi and Landweber theorem hold for all countable ordinals and that its full extension holds for all ordinals < \omega\^\omega

    Synthesis of Finite-state and Definable Winning Strategies

    Get PDF
    Church\u27s Problem asks for the construction of a procedure which, given a logical specification varphivarphi on sequence pairs, realizes for any input sequence II an output sequence OO such that (I,O)(I,O) satisfies varphivarphi. McNaughton reduced Church\u27s Problem to a problem about two-playeromegaomega-games. B"uchi and Landweber gave a solution for Monadic Second-Order Logic of Order (MLOMLO) specifications in terms of finite-state strategies. We consider two natural generalizations of the Church problem to countable ordinals: the first deals with finite-state strategies; the second deals with MLOMLO-definable strategies. We investigate games of arbitrary countable length and prove the computability of these generalizations of Church\u27s problem

    Generalized Effective Reducibility

    Full text link
    We introduce two notions of effective reducibility for set-theoretical statements, based on computability with Ordinal Turing Machines (OTMs), one of which resembles Turing reducibility while the other is modelled after Weihrauch reducibility. We give sample applications by showing that certain (algebraic) constructions are not effective in the OTM-sense and considerung the effective equivalence of various versions of the axiom of choice

    Infinite computations with random oracles

    Full text link
    We consider the following problem for various infinite time machines. If a real is computable relative to large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable? We show that the answer is independent from ZFC for ordinal time machines (OTMs) with and without ordinal parameters and give a positive answer for most other machines. For instance, we consider, infinite time Turing machines (ITTMs), unresetting and resetting infinite time register machines (wITRMs, ITRMs), and \alpha-Turing machines for countable admissible ordinals \alpha

    Decreasing Diagrams for Confluence and Commutation

    Full text link
    Like termination, confluence is a central property of rewrite systems. Unlike for termination, however, there exists no known complexity hierarchy for confluence. In this paper we investigate whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing diagrams technique is one of the strongest and most versatile methods for proving confluence of abstract rewrite systems. It is complete for countable systems, and it has many well-known confluence criteria as corollaries. So what makes decreasing diagrams so powerful? In contrast to other confluence techniques, decreasing diagrams employ a labelling of the steps with labels from a well-founded order in order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask how the size of the label set influences the strength of the technique. In particular, what class of abstract rewrite systems can be proven confluent using decreasing diagrams restricted to 1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving confluence for every abstract rewrite system having the cofinality property, thus in particular for every confluent, countable system. Secondly, we show that this result stands in sharp contrast to the situation for commutation of rewrite relations, where the hierarchy does not collapse. Thirdly, investigating the possibility of a confluence hierarchy, we determine the first-order (non-)definability of the notion of confluence and related properties, using techniques from finite model theory. We find that in particular Hanf's theorem is fruitful for elegant proofs of undefinability of properties of abstract rewrite systems

    The Lost Melody Phenomenon

    Full text link
    A typical phenomenon for machine models of transfinite computations is the existence of so-called lost melodies, i.e. real numbers xx such that the characteristic function of the set {x}\{x\} is computable while xx itself is not (a real having the first property is called recognizable). This was first observed by J. D. Hamkins and A. Lewis for infinite time Turing machine, then demonstrated by P. Koepke and the author for ITRMITRMs. We prove that, for unresetting infinite time register machines introduced by P. Koepke, recognizability equals computability, i.e. the lost melody phenomenon does not occur. Then, we give an overview on our results on the behaviour of recognizable reals for ITRMITRMs. We show that there are no lost melodies for ordinal Turing machines or ordinal register machines without parameters and that this is, under the assumption that 0♯0^{\sharp} exists, independent of ZFCZFC. Then, we introduce the notions of resetting and unresetting α\alpha-register machines and give some information on the question for which of these machines there are lost melodies

    A Conversation on Divine Infinity and Cantorian Set Theory

    Full text link
    This essay is written as a drama that opens with Aristotle, St. Augustine of Hippo, St. Thomas Aquinas, and Nicholas of Cusa debating the nature and reality of infinity, introducing historical concepts such as potential, actual, and divine infinity. Georg Cantor, founder of set theory, then gives a lecture on set theory and transfinite numbers. The lecture concludes with a discussion of the theological motivations and implications of set theory and Cantor\'s absolute infinity. The paradoxes inherent in analyzing absolute infinity seem to provide a useful analogy for understanding God\'s unknowable nature and the divine relation to creation

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page
    • …
    corecore