452 research outputs found

    Restricted frame graphs and a conjecture of Scott

    Full text link
    Scott proved in 1997 that for any tree TT, every graph with bounded clique number which does not contain any subdivision of TT as an induced subgraph has bounded chromatic number. Scott also conjectured that the same should hold if TT is replaced by any graph HH. Pawlik et al. recently constructed a family of triangle-free intersection graphs of segments in the plane with unbounded chromatic number (thereby disproving an old conjecture of Erd\H{o}s). This shows that Scott's conjecture is false whenever HH is obtained from a non-planar graph by subdividing every edge at least once. It remains interesting to decide which graphs HH satisfy Scott's conjecture and which do not. In this paper, we study the construction of Pawlik et al. in more details to extract more counterexamples to Scott's conjecture. For example, we show that Scott's conjecture is false for any graph obtained from K4K_4 by subdividing every edge at least once. We also prove that if GG is a 2-connected multigraph with no vertex contained in every cycle of GG, then any graph obtained from GG by subdividing every edge at least twice is a counterexample to Scott's conjecture.Comment: 21 pages, 8 figures - Revised version (note that we moved some of our results to an appendix

    S-Packing Colorings of Cubic Graphs

    Full text link
    Given a non-decreasing sequence S=(s_1,s_2,…,s_k)S=(s\_1,s\_2, \ldots, s\_k) of positive integers, an {\em SS-packing coloring} of a graph GG is a mapping cc from V(G)V(G) to {s_1,s_2,…,s_k}\{s\_1,s\_2, \ldots, s\_k\} such that any two vertices with color s_is\_i are at mutual distance greater than s_is\_i, 1≤i≤k1\le i\le k. This paper studies SS-packing colorings of (sub)cubic graphs. We prove that subcubic graphs are (1,2,2,2,2,2,2)(1,2,2,2,2,2,2)-packing colorable and (1,1,2,2,3)(1,1,2,2,3)-packing colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we provide an example of a cubic graph of order 3838 which is not (1,2,…,12)(1,2,\ldots,12)-packing colorable

    On graphs with no induced subdivision of K4K_4

    Get PDF
    We prove a decomposition theorem for graphs that do not contain a subdivision of K4K_4 as an induced subgraph where K4K_4 is the complete graph on four vertices. We obtain also a structure theorem for the class C\cal C of graphs that contain neither a subdivision of K4K_4 nor a wheel as an induced subgraph, where a wheel is a cycle on at least four vertices together with a vertex that has at least three neighbors on the cycle. Our structure theorem is used to prove that every graph in C\cal C is 3-colorable and entails a polynomial-time recognition algorithm for membership in C\cal C. As an intermediate result, we prove a structure theorem for the graphs whose cycles are all chordless
    • …
    corecore