481 research outputs found

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    Optimal Mission Planning of Autonomous Mobile Agents for Applications in Microgrids, Sensor Networks, and Military Reconnaissance

    Get PDF
    As technology advances, the use of collaborative autonomous mobile systems for various applications will become evermore prevalent. One interesting application of these multi-agent systems is for autonomous mobile microgrids. These systems will play an increasingly important role in applications such as military special operations for mobile ad-hoc power infrastructures and for intelligence, surveillance, and reconnaissance missions. In performing these operations with these autonomous energy assets, there is a crucial need to optimize their functionality according to their specific application and mission. Challenges arise in determining mission characteristics such as how each resource should operate, when, where, and for how long. This thesis explores solutions in determining optimal mission plans around the applications of autonomous mobile microgrids and resource scheduling with UGVs and UAVs. Optimal network connections, energy asset locations, and cabling trajectories are determined in the mobile microgrid application. The resource scheduling applications investigate the use of a UGV to recharge wireless sensors in a wireless sensor network. Optimal recharging of mobile distributed UAVs performing reconnaissance missions is also explored. With genetic algorithm solution approaches, the results show the proposed methods can provide reasonable a-priori mission plans, considering the applied constraints and objective functions in each application. The contributions of this thesis are: (1) The development and analysis of solution methodologies and mission simulators for a-priori mission plan development and testing, for applications in organizing and scheduling power delivery with mobile energy assets. Applying these methods results in (2) the development and analysis of reasonable a-priori mission plans for autonomous mobile microgrids/assets, in various scenarios. This work could be extended to include a more diverse set of heterogeneous agents and incorporate dynamic loads to provide power to

    Enabling Hardware Green Internet of Things: A review of Substantial Issues

    Get PDF
    Between now and the near future, the Internet of Things (IoT) will redesign the socio-ecological morphology of the human terrain. The IoT ecosystem deploys diverse sensor platforms connecting millions of heterogeneous objects through the Internet. Irrespective of sensor functionality, most sensors are low energy consumption devices and are designed to transmit sporadically or continuously. However, when we consider the millions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology, as well as the development of EE solutions for sustainable IoT technology, cannot be overemphasised. Propelled by this need, EE proposals are expected to address the EE issues in the IoT context. Consequently, many developments continue to emerge, and the need to highlight them to provide clear insights to researchers on eco-sustainable and green IoT technologies becomes a crucial task. To pursue a clear vision of green IoT, this study aims to present the current state-of-the art insights into energy saving practices and strategies on green IoT. The major contribution of this study includes reviews and discussions of substantial issues in the enabling of hardware green IoT, such as green machine to machine, green wireless sensor networks, green radio frequency identification, green microcontroller units, integrated circuits and processors. This review will contribute significantly towards the future implementation of green and eco-sustainable IoT

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Energy-Aware Adaptive Weighted Grid Clustering Algorithm for Renewable Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs), built from many battery-operated sensor nodes are distributed in the environment for monitoring and data acquisition. Subsequent to the deployment of sensor nodes, the most challenging and daunting task is to enhance the energy resources for the lifetime performance of the entire WSN. In this study, we have attempted an approach based on the shortest path algorithm and grid clustering to save and renew power in a way that minimizes energy consumption and prolongs the overall network lifetime of WSNs. Initially, a wireless portable charging device (WPCD) is assumed which periodically travels on our proposed routing path among the nodes of the WSN to decrease their charge cycle time and recharge them with the help of wireless power transfer (WPT). Further, a scheduling scheme is proposed which creates clusters of WSNs. These clusters elect a cluster head among them based on the residual energy, buffer size, and distance of the head from each node of the cluster. The cluster head performs all data routing duties for all its member nodes to conserve the energy supposed to be consumed by member nodes. Furthermore, we compare our technique with the available literature by simulation, and the results showed a significant increase in the vacation time of the nodes of WSNs

    Energy Management in RFID-Sensor Networks: Taxonomy and Challenges

    Get PDF
    Ubiquitous Computing is foreseen to play an important role for data production and network connectivity in the coming decades. The Internet of Things (IoT) research which has the capability to encapsulate identification potential and sensing capabilities, strives towards the objective of developing seamless, interoperable and securely integrated systems which can be achieved by connecting the Internet with computing devices. This gives way for the evolution of wireless energy harvesting and power transmission using computing devices. Radio Frequency (RF) based Energy Management (EM) has become the backbone for providing energy to wireless integrated systems. The two main techniques for EM in RFID Sensor Networks (RSN) are Energy Harvesting (EH) and Energy Transfer (ET). These techniques enable the dynamic energy level maintenance and optimisation as well as ensuring reliable communication which adheres to the goal of increased network performance and lifetime. In this paper, we present an overview of RSN, its types of integration and relative applications. We then provide the state-of-the-art EM techniques and strategies for RSN from August 2009 till date, thereby reviewing the existing EH and ET mechanisms designed for RSN. The taxonomy on various challenges for EM in RSN has also been articulated for open research directives

    Energy Optimization for WSN in Ubiquitous Power Internet of Things

    Get PDF
    This paper attempts to solve the problems of uneven energy consumption and premature death of nodes in the traditional routing algorithm of rechargeable wireless sensor network in the ubiquitous power Internet of things. Under the application environment of the UPIoT, a multipath routing algorithm and an opportunistic routing algorithm were put forward to optimize the network energy and ensure the success of information transmission. Inspired by the electromagnetic propagation theory, the author constructed a charging model for a single node in the wireless sensor network (WSN). On this basis, the network energy optimization problem was transformed into the network lifecycle problem, considering the energy consumption of wireless sensor nodes. Meanwhile, the traffic of each link was computed through linear programming to guide the distribution of data traffic in the network. Finally, an energy optimization algorithm was proposed based on opportunistic routing, in a more realistic low power mode. The experimental results show that the two proposed algorithms achieved better energy efficiency, network lifecycle and network reliability than the shortest path routing (SPR) and the expected duty-cycled wakeups minimal routing (EDC). The research findings provide a reference for the data transmission of UPIoT nodes
    • …
    corecore