324 research outputs found

    Demystifying the Characteristics of 3D-Stacked Memories: A Case Study for Hybrid Memory Cube

    Full text link
    Three-dimensional (3D)-stacking technology, which enables the integration of DRAM and logic dies, offers high bandwidth and low energy consumption. This technology also empowers new memory designs for executing tasks not traditionally associated with memories. A practical 3D-stacked memory is Hybrid Memory Cube (HMC), which provides significant access bandwidth and low power consumption in a small area. Although several studies have taken advantage of the novel architecture of HMC, its characteristics in terms of latency and bandwidth or their correlation with temperature and power consumption have not been fully explored. This paper is the first, to the best of our knowledge, to characterize the thermal behavior of HMC in a real environment using the AC-510 accelerator and to identify temperature as a new limitation for this state-of-the-art design space. Moreover, besides bandwidth studies, we deconstruct factors that contribute to latency and reveal their sources for high- and low-load accesses. The results of this paper demonstrates essential behaviors and performance bottlenecks for future explorations of packet-switched and 3D-stacked memories.Comment: EEE Catalog Number: CFP17236-USB ISBN 13: 978-1-5386-1232-

    A Modern Primer on Processing in Memory

    Full text link
    Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks: (1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms, especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the data-intensive server and energy-constrained mobile systems of today. At the same time, conventional memory technology is facing many technology scaling challenges in terms of reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic, the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an evidence of this trend. This chapter discusses recent research that aims to practically enable computation close to data, an approach we call processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between the computation units and memory is reduced or eliminated.Comment: arXiv admin note: substantial text overlap with arXiv:1903.0398

    Retrospective: A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

    Full text link
    Our ISCA 2015 paper provides a new programmable processing-in-memory (PIM) architecture and system design that can accelerate key data-intensive applications, with a focus on graph processing workloads. Our major idea was to completely rethink the system, including the programming model, data partitioning mechanisms, system support, instruction set architecture, along with near-memory execution units and their communication architecture, such that an important workload can be accelerated at a maximum level using a distributed system of well-connected near-memory accelerators. We built our accelerator system, Tesseract, using 3D-stacked memories with logic layers, where each logic layer contains general-purpose processing cores and cores communicate with each other using a message-passing programming model. Cores could be specialized for graph processing (or any other application to be accelerated). To our knowledge, our paper was the first to completely design a near-memory accelerator system from scratch such that it is both generally programmable and specifically customizable to accelerate important applications, with a case study on major graph processing workloads. Ensuing work in academia and industry showed that similar approaches to system design can greatly benefit both graph processing workloads and other applications, such as machine learning, for which ideas from Tesseract seem to have been influential. This short retrospective provides a brief analysis of our ISCA 2015 paper and its impact. We briefly describe the major ideas and contributions of the work, discuss later works that built on it or were influenced by it, and make some educated guesses on what the future may bring on PIM and accelerator systems.Comment: Selected to the 50th Anniversary of ISCA (ACM/IEEE International Symposium on Computer Architecture), Commemorative Issue, 202
    • …
    corecore