424,320 research outputs found

    Boosting Fronthaul Capacity: Global Optimization of Power Sharing for Centralized Radio Access Network

    Full text link
    The limited fronthaul capacity imposes a challenge on the uplink of centralized radio access network (C-RAN). We propose to boost the fronthaul capacity of massive multiple-input multiple-output (MIMO) aided C-RAN by globally optimizing the power sharing between channel estimation and data transmission both for the user devices (UDs) and the remote radio units (RRUs). Intuitively, allocating more power to the channel estimation will result in more accurate channel estimates, which increases the achievable throughput. However, increasing the power allocated to the pilot training will reduce the power assigned to data transmission, which reduces the achievable throughput. In order to optimize the powers allocated to the pilot training and to the data transmission of both the UDs and the RRUs, we assign an individual power sharing factor to each of them and derive an asymptotic closed-form expression of the signal-to-interference-plus-noise for the massive MIMO aided C-RAN consisting of both the UD-to-RRU links and the RRU-to-baseband unit (BBU) links. We then exploit the C-RAN architecture's central computing and control capability for jointly optimizing the UDs' power sharing factors and the RRUs' power sharing factors aiming for maximizing the fronthaul capacity. Our simulation results show that the fronthaul capacity is significantly boosted by the proposed global optimization of the power allocation between channel estimation and data transmission both for the UDs and for their host RRUs. As a specific example of 32 receive antennas (RAs) deployed by RRU and 128 RAs deployed by BBU, the sum-rate of 10 UDs achieved with the optimal power sharing factors improves 33\% compared with the one attained without optimizing power sharing factors

    A dynamic spectrum access scheme for cognitive radio networks

    Get PDF
    Abstract—In this paper, the dynamic spectrum access problem for cognitive radio (CR) networks is formulated as maximizing the sum channel capacity while satisfying the power budgets of individual secondary user radios as well as the SINR constraints on both the secondary and primary users. By applying the Karush-Kuhn-Tucker theorem, we derive a waterfilling soluton. An iterative water-filling algorithm is proposed for implementing joint channel and power allocation in a dynamically changing set of available channels. The proposed algorithm has a complexity that increases linearly with both the number of channels and the number of users

    The Impact of QoS Constraints on the Energy Efficiency of Fixed-Rate Wireless Transmissions

    Get PDF
    Transmission over wireless fading channels under quality of service (QoS) constraints is studied when only the receiver has channel side information. Being unaware of the channel conditions, transmitter is assumed to send the information at a fixed rate. Under these assumptions, a two-state (ON-OFF) transmission model is adopted, where information is transmitted reliably at a fixed rate in the ON state while no reliable transmission occurs in the OFF state. QoS limitations are imposed as constraints on buffer violation probabilities, and effective capacity formulation is used to identify the maximum throughput that a wireless channel can sustain while satisfying statistical QoS constraints. Energy efficiency is investigated by obtaining the bit energy required at zero spectral efficiency and the wideband slope in both wideband and low-power regimes assuming that the receiver has perfect channel side information (CSI). In both wideband and low-power regimes, the increased energy requirements due to the presence of QoS constraints are quantified. Comparisons with variable-rate/fixed-power and variable-rate/variable-power cases are given. Energy efficiency is further analyzed in the presence of channel uncertainties. The optimal fraction of power allocated to training is identified under QoS constraints. It is proven that the minimum bit energy in the low-power regime is attained at a certain nonzero power level below which bit energy increases without bound with vanishing power
    corecore