2,041,714 research outputs found

    Multimedia big data computing for in-depth event analysis

    Get PDF
    While the most part of ”big data” systems target text-based analytics, multimedia data, which makes up about 2/3 of internet traffic, provide unprecedented opportunities for understanding and responding to real world situations and challenges. Multimedia Big Data Computing is the new topic that focus on all aspects of distributed computing systems that enable massive scale image and video analytics. During the course of this paper we describe BPEM (Big Picture Event Monitor), a Multimedia Big Data Computing framework that operates over streams of digital photos generated by online communities, and enables monitoring the relationship between real world events and social media user reaction in real-time. As a case example, the paper examines publicly available social media data that relate to the Mobile World Congress 2014 that has been harvested and analyzed using the described system.Peer ReviewedPostprint (author's final draft

    Time Domain Explorations With Digital Sky Surveys

    Get PDF
    One of the new frontiers of astronomical research is the exploration of time variability on the sky at different wavelengths and flux levels. We have carried out a pilot project using DPOSS data to study strong variables and transients, and are now extending it to the new Palomar-QUEST synoptic sky survey. We report on our early findings and outline the methodology to be implemented in preparation for a real-time transient detection pipeline. In addition to large numbers of known types of highly variable sources (e.g., SNe, CVs, OVV QSOs, etc.), we expect to find numerous transients whose nature may be established by a rapid follow-up. Whereas we will make all detected variables publicly available through the web, we anticipate that email alerts would be issued in the real time for a subset of events deemed to be the most interesting. This real-time process entails many challenges, in an effort to maintain a high completeness while keeping the contamination low. We will utilize distributed Grid services developed by the GRIST project, and implement a variety of advanced statistical and machine learning techniques.Comment: 5 pages, 2 postscript figures, uses adassconf.sty. To be published in: "ADASS XIV (2004)", Eds. Patrick Shopbell, Matthew Britton and Rick Ebert, ASP Conference Serie

    Documentary in practice: filmmakers and production choices

    Get PDF
    Documentary in Practice provides a unique approach to practical documentary making. Through fascinating analysis of real life production experiences, Jane Chapman shows the challenges and issues faced by documentary makers and brings her own personal experience as both documentary producer and teacher to advise on how students can gain invaluable insight from these projects. Throughout this compelling text, ‘work-a-day’ producers provide their inside story and production records, including scripts, fund raising proposals, budgets, diagrams, post-production records and reviews. Across continents every project and its makers are different – whether they be seasoned television freelancers, an art house director, documentary maker activists, or first time film makers. They all face similar challenges, however, including budgetary factors influencing quality, how to connect visual approach to content, the morality of camera presence, conflict with commissioning editors, complaints and ethical challenges, and legal issues and censorship

    GPU-based Real-time Triggering in the NA62 Experiment

    Full text link
    Over the last few years the GPGPU (General-Purpose computing on Graphics Processing Units) paradigm represented a remarkable development in the world of computing. Computing for High-Energy Physics is no exception: several works have demonstrated the effectiveness of the integration of GPU-based systems in high level trigger of different experiments. On the other hand the use of GPUs in the low level trigger systems, characterized by stringent real-time constraints, such as tight time budget and high throughput, poses several challenges. In this paper we focus on the low level trigger in the CERN NA62 experiment, investigating the use of real-time computing on GPUs in this synchronous system. Our approach aimed at harvesting the GPU computing power to build in real-time refined physics-related trigger primitives for the RICH detector, as the the knowledge of Cerenkov rings parameters allows to build stringent conditions for data selection at trigger level. Latencies of all components of the trigger chain have been analyzed, pointing out that networking is the most critical one. To keep the latency of data transfer task under control, we devised NaNet, an FPGA-based PCIe Network Interface Card (NIC) with GPUDirect capabilities. For the processing task, we developed specific multiple ring trigger algorithms to leverage the parallel architecture of GPUs and increase the processing throughput to keep up with the high event rate. Results obtained during the first months of 2016 NA62 run are presented and discussed
    corecore