18,452 research outputs found

    Vision system implementation on Bioloid robot

    Get PDF
    Tato bakalářská práce se zabývá implementací systému vidění na dvounohý humanoid robot ze stavebnice Bioloid. Systém vidění je složen z bezdrátové kamery, která je namontovaná na robotovi a z řídícího počítače. Cílem této práce bylo zkonstruovat a oživit humanoidního robota, vytvořit systém vidění a bezdrátový komunikační systém. V centru je robot, který pomocí bezdrátové komunikace současně odesílá i přijímá údaje. Tento systém nabízí skvělé schopnosti na další rozšíření.This bachelor's thesis deals with vision system implementation on bipedal humanoid robot made of the Bioloid assembly kit. The vision system is composed of a wireless camera, mounted on the robot and the controlling computer. The goal of this work was to construct and vitalize the humanoid robot, to establish the vision system and to create a wireless communication system. The center of this system is the robot, which wirelessly sends and receives data simultaneously. This system offers great capabilities for further expansions.

    The infrared spectra of ABC-stacking tri- and tetra-layer graphenes studied by first-principles calculations

    Full text link
    The infrared absorption spectra of ABC-stacking tri- and tetra-layer graphenes are studied using the density functional theory. It is found that they exhibit very different characteristic peaks compared with those of AB-stacking ones, caused by the different stacking sequence and interlayer coupling. The anisotropy of the spectra with respect to the direction of the light electric field is significant. The spectra are more sensitive to the stacking number when the electric field is perpendicular to the graphene plane due to the interlayer polarization. The high sensitivities make it possible to identify the stacking sequence and stacking number of samples by comparing theory and experiment.Comment: 7 pages, 5 figure

    CGAMES'2009

    Get PDF

    Hot-spot analysis for drug discovery targeting protein-protein interactions

    Get PDF
    Introduction: Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.This work has been funded by grants BIO2016-79930-R and SEV-2015-0493 from the Spanish Ministry of Economy, Industry and Competitiveness, and grant EFA086/15 from EU Interreg V POCTEFA. M Rosell is supported by an FPI fellowship from the Severo Ochoa program. The authors are grateful for the support of the the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    License to chill!: how to empower users to cope with stress

    Get PDF
    There exists today a paucity of tools and devices that empower people to take control over their everyday behaviors and balance their stress levels. To overcome this deficit, we are creating a mobile service, Affective Health, where we aim to provide a holistic approach towards health by enabling users to make a connection between their daily activities and their own memories and subjective experiences. This construction is based upon values detected from certain bodily reactions that are then visualized on a mobile phone. Accomplishing this entailed figuring out how to provide real-time feedback without making the individual even more stressed, while also making certain that the representation empowered rather than controlled them. Useful design feedback was derived from testing two different visualizations on the mobile in a Wizard of Oz study. In short, we found that a successful design needs to: feel alive, allow for interpretative openness, include short-term history, and be updated in real-time. We also found that the interaction did not increase our participants stress reactions

    Recent developments in the realistic geometric modelling of textile structures using TexGen

    Get PDF
    Realistic geometric representation of fabrics is essential for modelling of mechanical and physical properties of textiles and textile composites. It is also advantageous to be able to generate those models quickly and easily. Recent developments in TexGen which automate the creation of models for 3D orthogonal, angle interlock and layer-to-layer fabrics and sheared 2D fabrics are described. Micro-Computed Tomography data of 3D fabrics has been used to identify geometrical characteristics which have formed the basis for implementation of refinements to the idealised fabrics generated automatically in TexGen. In 3D orthogonal textiles local geometrical variations, particularly in yarn cross-section, surface crimp and binder yarn path are apparent at different levels of compaction. The “refine” option in TexGen‟s 3D wizard automatically adjusts these features to achieve compaction to a specified thickness, using yarn volume fraction as a constraint. For sheared textiles a generic 2D plain weave fabric was used to identify key geometric features. Yarn rotation has been identified as one of these and the geometric description of the sheared fabric considers yarn rotations in terms of two elliptical cylinders crossing each other at an oblique angle. The rotational angle is derived mathematically from the tangential contact between yarns. Variations in yarn height along the length of the yarn have also been identified and both of these features are incorporated into a refine function for sheared textiles. Compatible voxelised mesh and periodic boundary conditions for the sheared domain have also been implemented. The models have been used to generate manufacturing data: permeability data for the 3D fabric and coefficient of thermal expansion for the sheared 2D fabric

    Recent developments in the realistic geometric modelling of textile structures using TexGen

    Get PDF
    Realistic geometric representation of fabrics is essential for modelling of mechanical and physical properties of textiles and textile composites. It is also advantageous to be able to generate those models quickly and easily. Recent developments in TexGen which automate the creation of models for 3D orthogonal, angle interlock and layer-to-layer fabrics and sheared 2D fabrics are described. Micro-Computed Tomography data of 3D fabrics has been used to identify geometrical characteristics which have formed the basis for implementation of refinements to the idealised fabrics generated automatically in TexGen. In 3D orthogonal textiles local geometrical variations, particularly in yarn cross-section, surface crimp and binder yarn path are apparent at different levels of compaction. The “refine” option in TexGen‟s 3D wizard automatically adjusts these features to achieve compaction to a specified thickness, using yarn volume fraction as a constraint. For sheared textiles a generic 2D plain weave fabric was used to identify key geometric features. Yarn rotation has been identified as one of these and the geometric description of the sheared fabric considers yarn rotations in terms of two elliptical cylinders crossing each other at an oblique angle. The rotational angle is derived mathematically from the tangential contact between yarns. Variations in yarn height along the length of the yarn have also been identified and both of these features are incorporated into a refine function for sheared textiles. Compatible voxelised mesh and periodic boundary conditions for the sheared domain have also been implemented. The models have been used to generate manufacturing data: permeability data for the 3D fabric and coefficient of thermal expansion for the sheared 2D fabric
    corecore