65 research outputs found

    On external presentations of infinite graphs

    Get PDF
    The vertices of a finite state system are usually a subset of the natural numbers. Most algorithms relative to these systems only use this fact to select vertices. For infinite state systems, however, the situation is different: in particular, for such systems having a finite description, each state of the system is a configuration of some machine. Then most algorithmic approaches rely on the structure of these configurations. Such characterisations are said internal. In order to apply algorithms detecting a structural property (like identifying connected components) one may have first to transform the system in order to fit the description needed for the algorithm. The problem of internal characterisation is that it hides structural properties, and each solution becomes ad hoc relatively to the form of the configurations. On the contrary, external characterisations avoid explicit naming of the vertices. Such characterisation are mostly defined via graph transformations. In this paper we present two kind of external characterisations: deterministic graph rewriting, which in turn characterise regular graphs, deterministic context-free languages, and rational graphs. Inverse substitution from a generator (like the complete binary tree) provides characterisation for prefix-recognizable graphs, the Caucal Hierarchy and rational graphs. We illustrate how these characterisation provide an efficient tool for the representation of infinite state systems

    The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata

    Get PDF
    In this paper we give two equivalent characterizations of the Caucal hierarchy, a hierarchy of infinite graphs with a decidable monadic second-order (MSO) theory. It is obtained by iterating the graph transformations of unfolding and inverse rational mapping. The first characterization sticks to this hierarchical approach, replacing the language-theoretic operation of a rational mapping by an MSO-transduction and the unfolding by the treegraph operation. The second characterization is non-iterative. We show that the family of graphs of the Caucal hierarchy coincides with the family of graphs obtained as the ε-closure of configuration graphs of higher-order pushdown automata. While the different characterizations of the graph family show their robustness and thus also their importance, the characterization in terms of higher-order pushdown automata additionally yields that the graph hierarchy is indeed strict

    Covering of ordinals

    Get PDF
    The paper focuses on the structure of fundamental sequences of ordinals smaller than ϵ0\epsilon_0. A first result is the construction of a monadic second-order formula identifying a given structure, whereas such a formula cannot exist for ordinals themselves. The structures are precisely classified in the pushdown hierarchy. Ordinals are also located in the hierarchy, and a direct presentation is given.Comment: Accepted at FSTTCS'0

    Collapsible Pushdown Graphs of Level 2 are Tree-Automatic

    Get PDF
    We show that graphs generated by collapsible pushdown systems of level 2 are tree-automatic. Even when we allow ϵ\epsilon-contractions and add a reachability predicate (with regular constraints) for pairs of configurations, the structures remain tree-automatic. Hence, their FO theories are decidable, even when expanded by a reachability predicate. As a corollary, we obtain the tree-automaticity of the second level of the Caucal-hierarchy.Comment: 12 pages Accepted for STACS 201

    Probabilistic regular graphs

    Get PDF
    Deterministic graph grammars generate regular graphs, that form a structural extension of configuration graphs of pushdown systems. In this paper, we study a probabilistic extension of regular graphs obtained by labelling the terminal arcs of the graph grammars by probabilities. Stochastic properties of these graphs are expressed using PCTL, a probabilistic extension of computation tree logic. We present here an algorithm to perform approximate verification of PCTL formulae. Moreover, we prove that the exact model-checking problem for PCTL on probabilistic regular graphs is undecidable, unless restricting to qualitative properties. Our results generalise those of EKM06, on probabilistic pushdown automata, using similar methods combined with graph grammars techniques.Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    Higher-Order Pushdown Systems with Data

    Full text link
    We propose a new extension of higher-order pushdown automata, which allows to use an infinite alphabet. The new automata recognize languages of data words (instead of normal words), which beside each its letter from a finite alphabet have a data value from an infinite alphabet. Those data values can be loaded to the stack of the automaton, and later compared with some farther data values on the input. Our main purpose for introducing these automata is that they may help in analyzing normal automata (without data). As an example, we give a proof that deterministic automata with collapse can recognize more languages than deterministic automata without collapse. This proof is simpler than in the no-data case. We also state a hypothesis how the new automaton model can be related to the original model of higher-order pushdown automata.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

    Get PDF
    We study (collapsible) higher-order pushdown systems --- theoretically robust and well-studied models of higher-order programs --- along with their natural subclass called (collapsible) higher-order basic process algebras. We provide a comprehensive analysis of the model checking complexity of a range of both branching-time and linear-time temporal logics. We obtain tight bounds on data, expression, and combined-complexity for both (collapsible) higher-order pushdown systems and (collapsible) higher-order basic process algebra. At order-kk, results range from polynomial to (k+1)(k+1)-exponential time. Finally, we study (collapsible) higher-order basic process algebras as graph generators and show that they are almost as powerful as (collapsible) higher-order pushdown systems up to MSO interpretations

    Collapsible Pushdown Automata and Recursion Schemes

    Get PDF
    International audienceWe consider recursion schemes (not assumed to be homogeneously typed, and hence not necessarily safe) and use them as generators of (possibly infinite) ranked trees. A recursion scheme is essentially a finite typed {deterministic term} rewriting system that generates, when one applies the rewriting rules ad infinitum, an infinite tree, called its value tree. A fundamental question is to provide an equivalent description of the trees generated by recursion schemes by a class of machines. In this paper we answer this open question by introducing collapsible pushdown automata (CPDA), which are an extension of deterministic (higher-order) pushdown automata. A CPDA generates a tree as follows. One considers its transition graph, unfolds it and contracts its silent transitions, which leads to an infinite tree which is finally node labelled thanks to a map from the set of control states of the CPDA to a ranked alphabet. Our contribution is to prove that these two models, higher-order recursion schemes and collapsible pushdown automata, are equi-expressive for generating infinite ranked trees. This is achieved by giving an effective transformations in both directions
    • …
    corecore