140 research outputs found

    The Internal Operads of Combinatory Algebras

    Full text link
    We argue that operads provide a general framework for dealing with polynomials and combinatory completeness of combinatory algebras, including the classical SK\mathbf{SK}-algebras, linear BCI\mathbf{BCI}-algebras, planar BI(_)\mathbf{BI}(\_)^\bullet-algebras as well as the braided BC±I\mathbf{BC^\pm I}-algebras. We show that every extensional combinatory algebra gives rise to a canonical closed operad, which we shall call the internal operad of the combinatory algebra. The internal operad construction gives a left adjoint to the forgetful functor from closed operads to extensional combinatory algebras. As a by-product, we derive extensionality axioms for the classes of combinatory algebras mentioned above

    Arithmetic of positive characteristic L-series values in Tate algebras

    Full text link
    The second author has recently introduced a new class of L-series in the arithmetic theory of function fields over finite fields. We show that the value at one of these L-series encode arithmetic informations of certain Drinfeld modules defined over Tate algebras. This enables us to generalize Anderson's log-algebraicity Theorem and Taelman's Herbrand-Ribet Theorem.Comment: final versio

    Complete intersections and mod p cochains

    Full text link
    We give homotopy invariant definitions corresponding to three well known properties of complete intersections, for the ring, the module theory and the endomorphisms of the residue field, and we investigate them for the mod p cochains on a space, showing that suitable versions of the second and third are equivalent and that the first is stronger. We are particularly interested in classifying spaces of groups, and we give a number of examples. This paper follows on from arXiv:0906.4025 which considered the classical case of a commutative ring and arXiv:0906.3247 which considered the case of rational homotopy theory.Comment: To appear in AG

    Equations of tropical varieties

    Get PDF
    We introduce a scheme-theoretic enrichment of the principal objects of tropical geometry. Using a category of semiring schemes, we construct tropical hypersurfaces as schemes over idempotent semirings such as =(ℝ∪{−∞},max,+) by realizing them as solution sets to explicit systems of tropical equations that are uniquely determined by idempotent module theory. We then define a tropicalization functor that sends closed subschemes of a toric variety over a ring R with non-archimedean valuation to closed subschemes of the corresponding tropical toric variety. Upon passing to the set of -points this reduces to Kajiwara-Payne's extended tropicalization, and in the case of a projective hypersurface we show that the scheme structure determines the multiplicities attached to the top-dimensional cells. By varying the valuation, these tropicalizations form algebraic families of -schemes parameterized by a moduli space of valuations on R that we construct. For projective subschemes, the Hilbert polynomial is preserved by tropicalization, regardless of the valuation. We conclude with some examples and a discussion of tropical bases in the scheme-theoretic setting

    Algebraic structures of tropical mathematics

    Full text link
    Tropical mathematics often is defined over an ordered cancellative monoid \tM, usually taken to be (\RR, +) or (\QQ, +). Although a rich theory has arisen from this viewpoint, cf. [L1], idempotent semirings possess a restricted algebraic structure theory, and also do not reflect certain valuation-theoretic properties, thereby forcing researchers to rely often on combinatoric techniques. In this paper we describe an alternative structure, more compatible with valuation theory, studied by the authors over the past few years, that permits fuller use of algebraic theory especially in understanding the underlying tropical geometry. The idempotent max-plus algebra AA of an ordered monoid \tM is replaced by R: = L\times \tM, where LL is a given indexing semiring (not necessarily with 0). In this case we say RR layered by LL. When LL is trivial, i.e, L={1}L=\{1\}, RR is the usual bipotent max-plus algebra. When L={1,}L=\{1,\infty\} we recover the "standard" supertropical structure with its "ghost" layer. When L = \NN we can describe multiple roots of polynomials via a "layering function" s:RLs: R \to L. Likewise, one can define the layering s:R(n)L(n)s: R^{(n)} \to L^{(n)} componentwise; vectors v1,,vmv_1, \dots, v_m are called tropically dependent if each component of some nontrivial linear combination \sum \a_i v_i is a ghost, for "tangible" \a_i \in R. Then an n×nn\times n matrix has tropically dependent rows iff its permanent is a ghost. We explain how supertropical algebras, and more generally layered algebras, provide a robust algebraic foundation for tropical linear algebra, in which many classical tools are available. In the process, we provide some new results concerning the rank of d-independent sets (such as the fact that they are semi-additive),put them in the context of supertropical bilinear forms, and lay the matrix theory in the framework of identities of semirings.Comment: 19 page
    corecore