65,657 research outputs found

    Dataplane Specialization for High-performance OpenFlow Software Switching

    Get PDF
    OpenFlow is an amazingly expressive dataplane program- ming language, but this expressiveness comes at a severe performance price as switches must do excessive packet clas- sification in the fast path. The prevalent OpenFlow software switch architecture is therefore built on flow caching, but this imposes intricate limitations on the workloads that can be supported efficiently and may even open the door to mali- cious cache overflow attacks. In this paper we argue that in- stead of enforcing the same universal flow cache semantics to all OpenFlow applications and optimize for the common case, a switch should rather automatically specialize its dat- aplane piecemeal with respect to the configured workload. We introduce ES WITCH , a novel switch architecture that uses on-the-fly template-based code generation to compile any OpenFlow pipeline into efficient machine code, which can then be readily used as fast path. We present a proof- of-concept prototype and we demonstrate on illustrative use cases that ES WITCH yields a simpler architecture, superior packet processing speed, improved latency and CPU scala- bility, and predictable performance. Our prototype can eas- ily scale beyond 100 Gbps on a single Intel blade even with complex OpenFlow pipelines

    Boosting the Performance of PC-based Software Routers with FPGA-enhanced Network Interface Cards

    Get PDF
    The research community is devoting increasing attention to software routers based on off-the-shelf hardware and open-source operating systems running on the personalcomputer (PC) architecture. Today's high-end PCs are equipped with peripheral component interconnect (PCI) shared buses enabling them to easily fit into the multi-gigabit-per-second routing segment, for a price much lower than that of commercial routers. However, commercially-available PC network interface cards (NICs) lack programmability, and require not only packets to cross the PCI bus twice, but also to be processed in software by the operating system, strongly reducing the achievable forwarding rate. It is therefore interesting to explore the performance of customizable NICs based on field-programmable gate array (FPGA) logic devices we developed and assess how well they can overcome the limitations of today's commercially-available NIC
    • 

    corecore