8,143 research outputs found

    Adaptive planning for distributed systems using goal accomplishment tracking

    Get PDF
    Goal accomplishment tracking is the process of monitoring the progress of a task or series of tasks towards completing a goal. Goal accomplishment tracking is used to monitor goal progress in a variety of domains, including workflow processing, teleoperation and industrial manufacturing. Practically, it involves the constant monitoring of task execution, analysis of this data to determine the task progress and notification of interested parties. This information is usually used in a passive way to observe goal progress. However, responding to this information may prevent goal failures. In addition, responding proactively in an opportunistic way can also lead to goals being completed faster. This paper proposes an architecture to support the adaptive planning of tasks for fault tolerance or opportunistic task execution based on goal accomplishment tracking. It argues that dramatically increased performance can be gained by monitoring task execution and altering plans dynamically

    Developing Experimental Models for NASA Missions with ASSL

    Full text link
    NASA's new age of space exploration augurs great promise for deep space exploration missions whereby spacecraft should be independent, autonomous, and smart. Nowadays NASA increasingly relies on the concepts of autonomic computing, exploiting these to increase the survivability of remote missions, particularly when human tending is not feasible. Autonomic computing has been recognized as a promising approach to the development of self-managing spacecraft systems that employ onboard intelligence and rely less on control links. The Autonomic System Specification Language (ASSL) is a framework for formally specifying and generating autonomic systems. As part of long-term research targeted at the development of models for space exploration missions that rely on principles of autonomic computing, we have employed ASSL to develop formal models and generate functional prototypes for NASA missions. This helps to validate features and perform experiments through simulation. Here, we discuss our work on developing such missions with ASSL.Comment: 7 pages, 4 figures, Workshop on Formal Methods for Aerospace (FMA'09

    Modeling Adaptation with Klaim

    Get PDF
    In recent years, it has been argued that systems and applications, in order to deal with their increasing complexity, should be able to adapt their behavior according to new requirements or environment conditions. In this paper, we present an investigation aiming at studying how coordination languages and formal methods can contribute to a better understanding, implementation and use of the mechanisms and techniques for adaptation currently proposed in the literature. Our study relies on the formal coordination language Klaim as a common framework for modeling some well-known adaptation techniques: the IBM MAPE-K loop, the Accord component-based framework for architectural adaptation, and the aspect- and context-oriented programming paradigms. We illustrate our approach through a simple example concerning a data repository equipped with an automated cache mechanism

    An architecture for autonomic web service process planning

    Get PDF
    Web service composition is a technology that has received considerable attention in the last number of years. Languages and tools to aid in the process of creating composite web services have been received specific attention. Web service composition is the process of linking single web services together in order to accomplish more complex tasks. One area of web service composition that has not received as much attention is the area of dynamic error handling and re-planning, enabling autonomic composition. Given a repository of service descriptions and a task to complete, it is possible for AI planners to automatically create a plan that will achieve this goal. If however a service in the plan is unavailable or erroneous the plan will fail. Motivated by this problem, this paper suggests autonomous re-planning as a means to overcome dynamic problems. Our solution involves automatically recovering from faults and creating a context-dependent alternate plan
    • ā€¦
    corecore