7,322 research outputs found

    Efficient Constrained Codes That Enable Page Separation in Modern Flash Memories

    Full text link
    The pivotal storage density win achieved by solid-state devices over magnetic devices recently is a result of multiple innovations in physics, architecture, and signal processing. Constrained coding is used in Flash devices to increase reliability via mitigating inter-cell interference. Recently, capacity-achieving constrained codes were introduced to serve that purpose. While these codes result in minimal redundancy, they result in non-negligible complexity increase and access speed limitation since pages cannot be read separately. In this paper, we suggest new constrained coding schemes that have low-complexity and preserve the desirable high access speed in modern Flash devices. The idea is to eliminate error-prone patterns by coding data either only on the left-most page (binary coding) or only on the two left-most pages (44-ary coding) while leaving data on all the remaining pages uncoded. Our coding schemes are systematic and capacity-approaching. We refer to the proposed schemes as read-and-run (RR) constrained coding schemes. The 44-ary RR coding scheme is introduced to limit the rate loss. We analyze the new RR coding schemes and discuss their impact on the probability of occurrence of different charge levels. We also demonstrate the performance improvement achieved via RR coding on a practical triple-level cell Flash device.Comment: 30 pages (single column), 5 figures, submitted to the IEEE Transactions on Communications (TCOM). arXiv admin note: substantial text overlap with arXiv:2111.0741

    The Value of "Value Pricing" of Roads: Second-Best Pricing and Product Differentiation

    Get PDF
    Some road-pricing demonstrations use an approach called "value pr icing", in which travelers can choose between a free but congested roadway and a priced roadway. Recent research has uncovered a potentially serious problem for such demonstrations: in certain models, second-best tolls are far lower than those typically charged, and the welfare gains from profit maximization are small or even negative. That research, however , assumes that all travelers are identical, and it therefore neglects the benefits of product differentiation, by which people with different values of time can choose a suitable cost/quality combination. Using a model with two user groups, we find that accounting for heterogeneity in value of time is important in evaluating constrained policies, and improves the relative performance of policies that offer differential prices. Nevertheless, for most of the reasonable range of heterogeneity, second-best pricing produces far fewer benefits than pricing both roadways optimally, and profit-maximizing tolls are so high that over all welfare is reduced from the no-toll baseline.

    Faster-than-Nyquist signaling for next generation communication architectures

    Get PDF
    We discuss a few promising applications of the faster-than-Nyquist (FTN) signaling technique. Although proposed in the mid 70s, thanks to recent extensions this technique is taking on a new lease of life. In particular, we will discuss its applications to satellite systems for broadcasting transmissions, optical long-haul transmissions, and next-generation cellular systems, possibly equipped with a large scale antenna system (LSAS) at the base stations (BSs). Moreover, based on measurements with a 128 element antenna array, we analyze the spectral efficiency that can be achieved with simple receiver solutions in single carrier LSAS systems

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF

    DEVELOPMENT AND CALIBRATION OF A GLOBAL GEOMETRIC DESIGN CONSISTENCY MODEL FOR TWO-LANE RURAL HIGHWAYS, BASED ON THE USE OF CONTINUOUS OPERATING SPEED PROFILES

    Full text link
    Road safety is one of the most important problems in our society. It causes hundreds of fatalities every year worldwide. A road accident may be caused by several concurrent factors. The most common are human and infrastructure. Their interaction is important too, which has been studied in-depth for years. Therefore, there is a better knowledge about the driving task. In several cases, these advances are still not included in road guidelines. Some of these advances are centered on explaining the underlying cognitive processes of the driving task. Some others are related to the analysis of drivers’ response or a better estimation of road crashes. The concept of design consistency is related to all of them. Road design consistency is the way how road alignment fits drivers’ expectancies. Hence, drivers are surprised at inconsistent roads, presenting a higher crash risk potential. This PhD presents a new, operating speed-based global consistency model. It is based on the analysis of more than 150 two-lane rural homogeneous road segments of the Valencian Region (Spain). The final consistency parameter was selected as the combination of operational parameters that best estimated the number of crashes. Several innovative auxiliary tools were developed for this process. One example is a new tool for recreating the horizontal alignment of two-lane rural roads by means of an analytic-heuristic process. A new procedure for determining road homogeneous segments was also developed, as well as some expressions to accurately determine the most adequate design speed. The consistency model can be integrated into safety performance functions in order to estimate the amount of road crashes. Finally, all innovations are combined into a new road design methodology. This methodology aims to complement the existing guidelines, providing to road safety a continuum approach and giving the engineers tools to estimate how safe are their road designs.Camacho Torregrosa, FJ. (2015). DEVELOPMENT AND CALIBRATION OF A GLOBAL GEOMETRIC DESIGN CONSISTENCY MODEL FOR TWO-LANE RURAL HIGHWAYS, BASED ON THE USE OF CONTINUOUS OPERATING SPEED PROFILES [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48543TESI

    Innovative capability and financing constraints for innovation: More money, more innovation?

    Get PDF
    This study presents a novel empirical approach to identify financing constraints for innovation based on the concept of an ideal test as suggested by Hall (2008). Firms were offered a hypothetical payment and were asked to choose between alternatives of use. If they selected additional innovation projects, they must have had some unexploited investment opportunities that were not profitable using more costly external finance. We attribute constraints for innovation not only to lacking financing, but also to firms' innovative capability. Econometric results show that financial constraints do not depend on the availability of internal funds per se, but that they are driven by innovative capability. --Innovation,financing constraints,innovative capability,multivariate probit models

    System, Subsystem, Hive: boundary problems in computational theories of consciousness

    Get PDF
    A computational theory of consciousness should include a quantitative measure of consciousness, or MoC, that (i) would reveal to what extent a given system is conscious, (ii) would make it possible to compare not only different systems, but also the same system at different times, and (iii) would be graded, because so is consciousness. However, unless its design is properly constrained, such an MoC gives rise to what we call the boundary problem: an MoC that labels a system as conscious will do so for some – perhaps most – of its subsystems, as well as for irrelevantly extended systems (e.g., the original system augmented with physical appendages that contribute nothing to the properties supposedly supporting consciousness), and for aggregates of individually conscious systems (e.g., groups of people). This problem suggests that the properties that are being measured are epiphenomenal to consciousness, or else it implies a bizarre proliferation of minds. We propose that a solution to the boundary problem can be found by identifying properties that are intrinsic or systemic: properties that clearly differentiate between systems whose existence is a matter of fact, as opposed to those whose existence is a matter of interpretation (in the eye of the beholder). We argue that if a putative MoC can be shown to be systemic, this ipso facto resolves any associated boundary issues. As test cases, we analyze two recent theories of consciousness in light of our definitions: the Integrated Information Theory and the Geometric Theory of consciousness
    • …
    corecore