233 research outputs found

    The capacitated team orienteering problem

    Get PDF

    Profitable mixed capacitated arc routing and related problems

    Get PDF
    Mixed Capacitated Arc Routing Problems (MCARP) aim to identify a set of vehicle trips that, starting and ending at a depot node, serve a given number of links, regarding the vehicles capacity, and minimizing a cost function. If both profits and costs on arcs are considered, the Profitable Mixed Capacitated Arc Routing Problem (PMCARP) may be defined. We present compact flow based models for the PMCARP, where two types of services are tackled, mandatory and optional. Adaptations of the models to fit into some other related problems are also proposed. The models are evaluated, according to their bounds quality as well as the CPU times, over large sets of test instances. New instances have been created from benchmark ones in order to solve variants that have been introduced here for the first time. Results show the new models performance within CPLEX and compare, whenever available, the proposed models against other resolution methods.info:eu-repo/semantics/publishedVersio

    CASUALTY EVACUATION OPTIMIZATION IN A CONFLICTED ENVIRONMENT

    Get PDF
    Servicemembers who are injured, particularly in combat, often require rapid evacuation and transport through contested environments. Using unmanned autonomous vehicles (UAV) may help reduce the personnel required to move patients to points of care, thereby reducing the potential for further casualties. However, the UAV and the original patient may still be subject to detection by enemy agents in the area. Safely transporting a casualty in as little time as possible greatly improves survivability. Current treatment of the problem of moving casualties involves manned medical evacuation (MEDEVAC) missions, often with armed escorts. Autonomous evacuation will likely involve simple shortest path solutions to move from one point to another; however, this will not help protect from adversaries. Our model uses network flow optimization to best determine a safe path for autonomous casualty evacuation to follow, while avoiding adversaries and their attacks, and delivering a patient in a timely fashion. This model synchronizes departure and travel times of two echelons of vehicles to effect patient transfer for extraction to definitive care. With two scenarios, our results prove the concept of this model, successfully delivering patients with synchronized efforts, within time limits, and solving the problem in little computational time.Lieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.

    Distribution with Quality of Service Considerations:The Capacitated Routing Problem with Profits and Service Level Requirements

    Get PDF
    Inspired by a problem arising in cash logistics, we propose the Capacitated Routing Problem with Profits and Service Level Requirements (CRPPSLR). The CRPPSLR extends the class of Routing Problems with Profits by considering customers requesting deliveries to their (possibly multiple) service points. Moreover, each customer imposes a service level requirement specifying a minimum-acceptable bound on the fraction of its service points being delivered. A customer-specific financial penalty is incurred by the logistics service provider when this requirement is not met. The CRPPSLR consists in finding vehicle routes maximizing the difference between the collected revenues and the incurred transportation and penalty costs in such a way that vehicle capacity and route duration constraints are met. A fleet of homogeneous vehicles is available for serving the customers. We design a branch-and-cut algorithm and evaluate the usefulness of valid inequalities that have been effectively used for the capacitated vehicle routing problem and, more recently, for other routing problems with profits. A real-life case study taken from the cash supply chain in the Netherlands highlights the relevance of the problem under consideration. Computational results illustrate the performance of the proposed solution approach under different input parameter settings for the synthetic instances. For instances of real-life problems, we distinguish between coin and banknote distribution, as vehicle capacities only matter when considering the former. Finally, we report on the effectiveness of the valid inequalities in closing the optimality gap at the root node for both the synthetic and the real-life instances and conclude with a sensitivity analysis on the most significant input parameters of our model

    A matheuristic for the Team Orienteering Arc Routing Problem

    Full text link
    In the Team OrienteeringArc Routing Problem (TOARP) the potential customers are located on the arcs of a directed graph and are to be chosen on the basis of an associated profit. A limited fleet of vehicles is available to serve the chosen customers. Each vehicle has to satisfy a maximum route duration constraint. The goal is to maximize the profit of the served customers. We propose a matheuristic for the TOARP and test it on a set of benchmark instances for which the optimal solution or an upper bound is known. The matheuristic finds the optimal solutions on all, except one, instances of one of the four classes of tested instances (with up to 27 vertices and 296 arcs). The average error on all instances fo rwhich the optimal solution is available is 0.67 percent.Angel Corberan, Isaac Plana and Jose M. Sanchis wish to thank the Ministerio de Economia y Competitividad (project MTM2012-36163-C06-02) of Spain and the Generalitat Valenciana (project GVPROMETEO2013-049) for their support.Archetti, C.; Corberan, A.; Plana, I.; Sanchís Llopis, JM.; Speranza, MG. (2015). A matheuristic for the Team Orienteering Arc Routing Problem. European Journal of Operational Research. 245(2):392-401. https://doi.org/10.1016/j.ejor.2015.03.022S392401245
    corecore