9,489 research outputs found

    Efficient Proactive Caching for Supporting Seamless Mobility

    Full text link
    We present a distributed proactive caching approach that exploits user mobility information to decide where to proactively cache data to support seamless mobility, while efficiently utilizing cache storage using a congestion pricing scheme. The proposed approach is applicable to the case where objects have different sizes and to a two-level cache hierarchy, for both of which the proactive caching problem is hard. Additionally, our modeling framework considers the case where the delay is independent of the requested data object size and the case where the delay is a function of the object size. Our evaluation results show how various system parameters influence the delay gains of the proposed approach, which achieves robust and good performance relative to an oracle and an optimal scheme for a flat cache structure.Comment: 10 pages, 9 figure

    Impact of traffic mix on caching performance in a content-centric network

    Full text link
    For a realistic traffic mix, we evaluate the hit rates attained in a two-layer cache hierarchy designed to reduce Internet bandwidth requirements. The model identifies four main types of content, web, file sharing, user generated content and video on demand, distinguished in terms of their traffic shares, their population and object sizes and their popularity distributions. Results demonstrate that caching VoD in access routers offers a highly favorable bandwidth memory tradeoff but that the other types of content would likely be more efficiently handled in very large capacity storage devices in the core. Evaluations are based on a simple approximation for LRU cache performance that proves highly accurate in relevant configurations

    Dynamic Hierarchical Cache Management for Cloud RAN and Multi- Access Edge Computing in 5G Networks

    Get PDF
    Cloud Radio Access Networks (CRAN) and Multi-Access Edge Computing (MEC) are two of the many emerging technologies that are proposed for 5G mobile networks. CRAN provides scalability, flexibility, and better resource utilization to support the dramatic increase of Internet of Things (IoT) and mobile devices. MEC aims to provide low latency, high bandwidth and real- time access to radio networks. Cloud architecture is built on top of traditional Radio Access Networks (RAN) to bring the idea of CRAN and in MEC, cloud computing services are brought near users to improve the user’s experiences. A cache is added in both CRAN and MEC architectures to speed up the mobile network services. This research focuses on cache management of CRAN and MEC because there is a necessity to manage and utilize this limited cache resource efficiently. First, a new cache management algorithm, H-EXD-AHP (Hierarchical Exponential Decay and Analytical Hierarchy Process), is proposed to improve the existing EXD-AHP algorithm. Next, this paper designs three dynamic cache management algorithms and they are implemented on the proposed algorithm: H-EXD-AHP and an existing algorithm: H-PBPS (Hierarchical Probability Based Popularity Scoring). In these proposed designs, cache sizes of the different Service Level Agreement (SLA) users are adjusted dynamically to meet the guaranteed cache hit rate set for their corresponding SLA users. The minimum guarantee of cache hit rate is for our setting. Net neutrality, prioritized treatment will be in common practice. Finally, performance evaluation results show that these designs achieve the guaranteed cache hit rate for differentiated users according to their SLA

    Exploring the Memory-Bandwidth Tradeoff in an Information-Centric Network

    Full text link
    An information-centric network should realize significant economies by exploiting a favourable memory-bandwidth tradeoff: it is cheaper to store copies of popular content close to users than to fetch them repeatedly over the Internet. We evaluate this tradeoff for some simple cache network structures under realistic assumptions concerning the size of the content catalogue and its popularity distribution. Derived cost formulas reveal the relative impact of various cost, traffic and capacity parameters, allowing an appraisal of possible future network architectures. Our results suggest it probably makes more sense to envisage the future Internet as a loosely interconnected set of local data centers than a network like today's with routers augmented by limited capacity content stores.Comment: Proceedings of ITC 25 (International Teletraffic Congress), Shanghai, September, 201

    Any Data, Any Time, Anywhere: Global Data Access for Science

    Full text link
    Data access is key to science driven by distributed high-throughput computing (DHTC), an essential technology for many major research projects such as High Energy Physics (HEP) experiments. However, achieving efficient data access becomes quite difficult when many independent storage sites are involved because users are burdened with learning the intricacies of accessing each system and keeping careful track of data location. We present an alternate approach: the Any Data, Any Time, Anywhere infrastructure. Combining several existing software products, AAA presents a global, unified view of storage systems - a "data federation," a global filesystem for software delivery, and a workflow management system. We present how one HEP experiment, the Compact Muon Solenoid (CMS), is utilizing the AAA infrastructure and some simple performance metrics.Comment: 9 pages, 6 figures, submitted to 2nd IEEE/ACM International Symposium on Big Data Computing (BDC) 201
    • …
    corecore