38 research outputs found

    Analyzing Anomalous Artefacts in TDS-1 Delay Doppler Maps

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Global Navigation Satellite System Reflectometry (GNSS-R) uses the GNSS reflected signals to study parameters of the Earth's surface such as ocean surface height, wind speed, soil moisture, sea surface target detection. In this paper fourteen DDMs (Delay Doppler Maps) of TechDemoSat-1 (TDS-1) containing anomalous artefacts are presented and analyzed. Anomalous artefacts are not caused by the reflection from Earth surface targets, occultation, nor the leakages of direct signals, but likely - according to their delays- from reflection of targets above the Earth's surface (either airborne or spaceborne).Postprint (author's final draft

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table

    Meeting The DoD’s Tactical Weather Needs Using CubeSats

    Get PDF
    This thesis investigates a CubeSat design that uses Commercial-Off-The-Shelf (COTS) components to capture, store, process, and downlink collected terrestrial weather data at resolutions near stat-of-the-art. The weather phenomena to be detected and transmitted in a timely manner are cloud formations, wind profiles, ocean currents, sea state, lightning, temperature profiles, and precipitation. It is hypothesized and shown that the proposed design will provide an improvement on the current U.S. tactical weather collection satellites because of the anticipated increased reliability and lowered cost to build and maintain the proposed CubeSat constellation. The methodology employed a multi-phase approach through the collective research of a team of Air Force Institute of Technology (AFIT) master’s students to develop an initial satellite and constellation scheme, with my contributions as the payload lead. This thesis documents the initial satellite design and, through my risk reduction effort to refine the payload, proposes a final payload configuration to meet tactical weather requirements. The final payload includes three types of sensors and is used in 198 identical CubeSats of a LEO Walker constellation. This research has the potential to increase the reliability of weather data collection for the military, while at a low cost

    Parameter considerations for the retrieval of surface soil moisture from spaceborne GNSS-R

    Get PDF
    The Microwave Interferometric Reflectometer (MIR) is an airborne GNSS-R instrument developed by Universitat Politècnica de Catalunya. In 2018, it was flown twice over the agricultural Yanco area, New South Wales, Australia, once after a very dry period, and a further time the day after a strong rain event. This rain event resulted in many crop fields being entirely flooded, producing a saturation in the GNSS-R reflectivity value. In this work, the received data set is processed to identify the optimum integration time with the goal to minimize pixel blurring. This issue is assessed for airborne conditions, and then extra-polated to the spaceborne case. The presented results show that the blurring of the GNSS waveform is produced even from an airborne sensor with short integration times. Following the determination of an optimal integration time for the platform in use, the surface roughness term in the reflectivity equation can be isolated due to the signal saturation during very wet surface conditions. The final results from the two channels (L1 C/A and L5) are subsequently presented. In this case, it is shown that most reflectivity variations in GNSS-R measurements are linked to surface roughness and Speckle noise fluctuations rather than soil moisture changes.Postprint (updated version

    Implementation of a GNSS-R payload based on software defined radio for the 3CAT-2 mission

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The 3CAT-2 nanosatellite aims at demonstrating global navigation satellite system reflectometry (GNSS-R) techniques for spaceborne applications in the small form of a six-unit CubeSat. There are many challenges involved from a size, processing, and power perspectives. The proposed solution for the payload uses a software-defined radio (SDR) connected to a nadir looking array of dual-band and dual-frequency and dual-polarization antennas to capture the reflected GNSS signals and to a zenith looking patch antenna to capture the direct ones. The SDR is controlled by the payload computer, which retrieves the binary samples and processes the raw data to obtain delay-doppler maps (DDMs) via various techniques. DDMs are then compressed using the fully adaptive prediction error coder algorithm, producing an output more suitable for the limited downlink capabilities of these small platforms.Peer ReviewedPostprint (author's final draft

    A Survey on Small Satellite Technologies and Space Missions for Geodetic Applications

    Get PDF
    Advances in microelectronics, materials, combined with affordable and frequent launch opportunities has led to a revolution which consists of small satellite missions used for technology validation, Earth observation, space exploration. Small satellites are now being developed in large volumes for mega-constellations for Earth observation, Internet of Things (IoT) and low latency communications (internet) thus democratizing space and making new space applications a reality. Advances in small satellite platforms, miniaturization of instruments and the availability of low-cost launches for small satellites, can enable new, geodetic missions which can benefit from the use of constellations of small satellites. An overview of some of the most important small satellite based geodetic missions is presented, along with a brief overview of new mission concepts which can significantly enhance our knowledge in the geodetic field

    Detecting Targets above the Earth's Surface Using GNSS-R Delay Doppler Maps: Results from TDS-1

    Get PDF
    : Global Navigation Satellite System (GNSS) reflected signals can be used to remotely sense the Earth’s surface, known as GNSS reflectometry (GNSS-R). The GNSS-R technique has been applied to numerous areas, such as the retrieval of wind speed, and the detection of Earth surface objects. This work proposes a new application of GNSS-R, namely to detect objects above the Earth’s surface, such as low Earth orbit (LEO) satellites. To discuss its feasibility, 14 delay Doppler maps (DDMs) are first presented which contain unusually bright reflected signals as delays shorter than the specular reflection point over the Earth’s surface. Then, seven possible causes of these anomalies are analysed, reaching the conclusion that the anomalies are likely due to the signals being reflected from objects above the Earth’s surface. Next, the positions of the objects are calculated using the delay and Doppler information, and an appropriate geometry assumption. After that, suspect satellite objects are searched in the satellite database from Union of Concerned Scientists (UCS). Finally, three objects have been found to match the delay and Doppler conditions. In the absence of other reasons for these anomalies, GNSS-R could potentially be used to detect some objects above the Earth’s surface.Peer ReviewedPostprint (published version

    Engineering Calibration and Physical Principles of GNSS-Reflectometry for Earth Remote Sensing

    Full text link
    The Cyclone Global Navigation Satellite System (CYGNSS) is a NASA mission that uses 32 Global Positioning System (GPS) satellites as active sources and 8 CYGNSS satellites as passive receivers to measure ocean surface roughness and wind speed, as well as soil moisture and flood inundation over land. This dissertation addresses two major aspects of engineering calibration: (1) characterization of the GPS effective isotropic radiated power (EIRP) for calibration of normalized bistatic radar cross section (NBRCS) observables; and (2) development of an end-to-end calibration approach using modeling and measurements of ocean surface mean square slope (MSS). To estimate the GPS transmit power, a ground-based GPS constellation power monitor (GCPM) system has been built to accurately and precisely measure the direct GPS signals. The transmit power of the L1 coarse/acquisition (C/A) code of the full GPS constellation is estimated using an optimal search algorithm. Updated values for transmit power have been successfully applied to CYGNSS L1B calibration and found to significantly reduce the PRN dependence of CYGNSS L1 and L2 data products. The gain pattern of each GPS satellite’s transmit antenna for the L1 C/A signal is determined from measurements of signal strength received by the 8-satellite CYGNSS constellation. Determination of GPS patterns requires knowledge of CYGNSS patterns and vice versa, so a procedure is developed to solve for both of them iteratively. The new GPS and CYGNSS patterns have been incorporated into the science data processing algorithm used by the CYGNSS mission and result in improved calibration performance. Variable transmit power by numerous Block IIF and IIR-M GPS space vehicles has been observed due to their flex power mode. Non-uniformity in the GPS antenna gain patterns further complicates EIRP estimation. A dynamic calibration approach is developed to further address GPS EIRP variability. It uses measurements by the direct received GPS signal to estimate GPS EIRP in the specular reflected direction and then incorporates them into the calibration of NBRCS. Dynamic EIRP calibration instantaneously detects and corrects for power fluctuations in the GPS transmitters and significantly reduces errors due to GPS antenna gain azimuthal asymmetry. It allows observations with the most variable Block IIF transmitters (approximately 37% of the GPS constellation) to be included in the standard data products and further improves the calibration quality of the NBRCS. A physics-based approach is then proposed to examine potential calibration errors and to further improve the Level 1 calibration. The mean square slope (mss) is a key physical parameter that relates the ocean surface properties (wave spectra) to the CYGNSS measurement of NBRCS. An approach to model the mss for validation with CYGNSS mss data is developed by adding the contribution of a high frequency tail to the WAVEWATCH III (WW3) mss. It is demonstrated that the ratio of CYGNSS mss to modified WW3 mss can be used to diagnose potential calibration errors that exist in the Level 1 calibration algorithm. This approach can help to improve CYGNSS data quality, including the Level 1 NBRCS and Level 2 ocean surface wind speed and roughness. The engineering calibration methods presented in this dissertation make significant contributions to the spatial coverage, calibration quality of the measured NBRCS and the geophysical data products produced by the NASA CYGNSS mission. The research is also useful to the system design, science investigation and engineering calibration of future GNSS-reflectometry missions.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168052/1/wangtl_1.pd
    corecore