79,353 research outputs found

    ISM Simulations: An Overview of Models

    Get PDF
    Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.Comment: Overview paper (3 pages) presented by M. Avillez at the Special Session "Modern views of the interstellar medium", XXVIIIth IAU General Assembly, August 27-30, 2012, Beijing. Chin

    Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption

    Get PDF
    Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol

    Long-Lasting Alterations in Membrane Properties, K+ Currents, and Glutamatergic Synaptic Currents of Nucleus Accumbens Medium Spiny Neurons in a Rat Model of Alcohol Dependence

    Get PDF
    Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE) treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs) in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs), and larger fast afterhyperpolarizations (fAHPs) than MSNs from vehicle-treated animals, all suggestive of increases in K+-channel conductances. Significant increases in the Cs+-sensitive inwardly rectifying K+-current accounted for the increased input resistance, while increases in the A-type K+-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence

    Evaluating the 1931 CIE Color-Matching Functions

    Get PDF
    The use of colorimetry within industry has grown extensively in the last few decades. Central to many of today\u27s instruments is the CIE system, established in 1931. Many have questioned the validity of the assumptions made by Wright1 and Guild,2 some suggesting that the 1931 color-matching functions are not the best representation of the human visual system\u27s cone responses. A computational analysis was performed using metameric data to evaluate the CIE 1931 color-matching functions as compared to with other responsivity functions. The underlying assumption was that an optimal set of responsivity functions would yield minimal color-difference error between pairs of visually matched metamers. The difference of average color differences found in the six chosen sets of responsivity functions was small. The CIE 1931 2° color-matching functions on average yielded the largest color difference, 4.56 E. The best performance came from the CIE 1964 10° color-matching functions, which yielded an average color difference of 4.02 E. An optimization was then performed to derive a new set of color-matching functions that were visually matched using metameric pairs of spectral data. If all pairs were to be optimized to globally minimize the average color difference, it is expected that this would produce an optimal set of responsivity functions. The optimum solution was to use a weighted combination of each set of responsivity functions. The optimized set, called the Shaw and Fairchild responsivity functions, was able to reduce the average color difference to 3.92 E. In the final part of this study a computer-based simulation of the color differences between the sets of responsivity functions was built. This simulation allowed a user to load a spectral radiance or a spectral reflectance data file and display the tristimulus match predicted by each of the seven sets of responsivity functions
    corecore