55,409 research outputs found

    Developing Predictive Molecular Maps of Human Disease through Community-based Modeling

    Get PDF
    The failure of biology to identify the molecular causes of disease has led to disappointment in the rate of development of new medicines. By combining the power of community-based modeling with broad access to large datasets on a platform that promotes reproducible analyses we can work towards more predictive molecular maps that can deliver better therapeutics

    A framework for applying natural language processing in digital health interventions

    Get PDF
    BACKGROUND: Digital health interventions (DHIs) are poised to reduce target symptoms in a scalable, affordable, and empirically supported way. DHIs that involve coaching or clinical support often collect text data from 2 sources: (1) open correspondence between users and the trained practitioners supporting them through a messaging system and (2) text data recorded during the intervention by users, such as diary entries. Natural language processing (NLP) offers methods for analyzing text, augmenting the understanding of intervention effects, and informing therapeutic decision making. OBJECTIVE: This study aimed to present a technical framework that supports the automated analysis of both types of text data often present in DHIs. This framework generates text features and helps to build statistical models to predict target variables, including user engagement, symptom change, and therapeutic outcomes. METHODS: We first discussed various NLP techniques and demonstrated how they are implemented in the presented framework. We then applied the framework in a case study of the Healthy Body Image Program, a Web-based intervention trial for eating disorders (EDs). A total of 372 participants who screened positive for an ED received a DHI aimed at reducing ED psychopathology (including binge eating and purging behaviors) and improving body image. These users generated 37,228 intervention text snippets and exchanged 4285 user-coach messages, which were analyzed using the proposed model. RESULTS: We applied the framework to predict binge eating behavior, resulting in an area under the curve between 0.57 (when applied to new users) and 0.72 (when applied to new symptom reports of known users). In addition, initial evidence indicated that specific text features predicted the therapeutic outcome of reducing ED symptoms. CONCLUSIONS: The case study demonstrates the usefulness of a structured approach to text data analytics. NLP techniques improve the prediction of symptom changes in DHIs. We present a technical framework that can be easily applied in other clinical trials and clinical presentations and encourage other groups to apply the framework in similar contexts

    DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car

    Full text link
    We present DeepPicar, a low-cost deep neural network based autonomous car platform. DeepPicar is a small scale replication of a real self-driving car called DAVE-2 by NVIDIA. DAVE-2 uses a deep convolutional neural network (CNN), which takes images from a front-facing camera as input and produces car steering angles as output. DeepPicar uses the same network architecture---9 layers, 27 million connections and 250K parameters---and can drive itself in real-time using a web camera and a Raspberry Pi 3 quad-core platform. Using DeepPicar, we analyze the Pi 3's computing capabilities to support end-to-end deep learning based real-time control of autonomous vehicles. We also systematically compare other contemporary embedded computing platforms using the DeepPicar's CNN-based real-time control workload. We find that all tested platforms, including the Pi 3, are capable of supporting the CNN-based real-time control, from 20 Hz up to 100 Hz, depending on hardware platform. However, we find that shared resource contention remains an important issue that must be considered in applying CNN models on shared memory based embedded computing platforms; we observe up to 11.6X execution time increase in the CNN based control loop due to shared resource contention. To protect the CNN workload, we also evaluate state-of-the-art cache partitioning and memory bandwidth throttling techniques on the Pi 3. We find that cache partitioning is ineffective, while memory bandwidth throttling is an effective solution.Comment: To be published as a conference paper at RTCSA 201

    Demographic Inference and Representative Population Estimates from Multilingual Social Media Data

    Get PDF
    Social media provide access to behavioural data at an unprecedented scale and granularity. However, using these data to understand phenomena in a broader population is difficult due to their non-representativeness and the bias of statistical inference tools towards dominant languages and groups. While demographic attribute inference could be used to mitigate such bias, current techniques are almost entirely monolingual and fail to work in a global environment. We address these challenges by combining multilingual demographic inference with post-stratification to create a more representative population sample. To learn demographic attributes, we create a new multimodal deep neural architecture for joint classification of age, gender, and organization-status of social media users that operates in 32 languages. This method substantially outperforms current state of the art while also reducing algorithmic bias. To correct for sampling biases, we propose fully interpretable multilevel regression methods that estimate inclusion probabilities from inferred joint population counts and ground-truth population counts. In a large experiment over multilingual heterogeneous European regions, we show that our demographic inference and bias correction together allow for more accurate estimates of populations and make a significant step towards representative social sensing in downstream applications with multilingual social media.Comment: 12 pages, 10 figures, Proceedings of the 2019 World Wide Web Conference (WWW '19
    corecore