42 research outputs found

    Practical Attacks on Cryptographically End-to-end Verifiable Internet Voting Systems

    Get PDF
    Cryptographic end-to-end verifiable voting technologies concern themselves with the provision of a more trustworthy, transparent, and robust elections. To provide voting systems with more transparency and accountability throughout the process while preserving privacy which allows voters to express their true intent. Helios Voting is one of these systems---an online platform where anyone can easily host their own cryptographically end-to-end verifiable election, aiming to bring verifiable voting to the masses. Helios does this by providing explicit cryptographic checks that an election was counted correctly, checks that any member of the public can independently verify. All of this while still protecting one of the essential properties of open democracy, voter privacy. In spite of these cryptographic checks and the strong mathematical assertions of correctness they provide, this thesis discusses the discovery and exploit of three vulnerabilities. The first is the insufficient validation of cryptographic elements in Helios ballots uploaded by users. This allows a disgruntled voter to cast a carefully crafted ballot which will prevent an election from being tallied. The second vulnerability is the insufficient validation of cryptographic parameters used in ElGamal by an election official. This leads to an attack where the election official can upload weak parameters allowing the official to cast arbitrary votes in a single ballot. The final attack is a cross-site scripting attack that would allow anyone to steal or re-cast ballots on behalf of victims. We coordinated disclosure with the Helios developers and provided fixes for all the vulnerabilities outlined in the thesis. Additionally, this thesis adds to the body of work highlighting the fragility of internet voting applications and discusses the unique challenges faced by internet voting applications

    Implementation-level Analysis of the JavaScript Helios Voting Client

    Get PDF
    We perform the first automated security analysis of the actual JavaScript implementation of the Helios voting client, a state-of-the-art, web-based, open-audit voting system that is continuously being deployed for real-life elections. While its concept has been exhaustively analyzed by the security community, we actively analyze its actual JavaScript implementation. Automatically ascertaining the security of a large-scale JavaScript implementation comes with major technical challenges. By creating a sequence of program transformations, we overcome these challenges, thereby making the Helios JavaScript client accessible to existing static analysis techniques. We then automatically analyze the transformed client using graph slicing, reducing an approximately 7 million node graph representing the information flow of the client’s implementation to a handful of potentially harmful flows, each individually consisting of less than 40 nodes. Our interpretation of this analysis results in the exposure of two thus far undiscovered vulnerabilities affecting the live version of Helios: a serious cross-site scripting attack leading to arbitrary script execution and a browser-dependent execution path that results in ballots being sent in plaintext. These attacks can be mitigated with minor adaptations to Helios. Moreover, our program transformations result in a version of Helios with fewer external dependencies and, accordingly, a reduced attack surface

    Investigation of Voting Systems for the WPI Faculty

    Get PDF
    The Committee on Governance tasked the team with examining options for moving the election process for faculty committees to a web-based, electronic system to simplify the counting process. We identified issues important to voting in small community elections, paying special attention to WPI’s specific requirements. Using that knowledge, we created a set of criteria for evaluating a proposed system\u27s suitability for WPI faculty elections. Using the results of these evaluations we provide concrete steps to improve faculty elections

    Automated Security Analysis of Web Application Technologies

    Get PDF
    TheWeb today is a complex universe of pages and applications teeming with interactive content that we use for commercial and social purposes. Accordingly, the security of Web applications has become a concern of utmost importance. Devising automated methods to help developers to spot security flaws and thereby make the Web safer is a challenging but vital area of research. In this thesis, we leverage static analysis methods to automatically discover vulnerabilities in programs written in JavaScript or PHP. While JavaScript is the number one language fueling the client-side logic of virtually every Web application, PHP is the most widespread language on the server side. In the first part, we use a series of program transformations and information flow analysis to examine the JavaScript Helios voting client. Helios is a stateof- the-art voting system that has been exhaustively analyzed by the security community on a conceptual level and whose implementation is claimed to be highly secure. We expose two severe and so far undiscovered vulnerabilities. In the second part, we present a framework allowing developers to analyze PHP code for vulnerabilities that can be freely modeled. To do so, we build socalled code property graphs for PHP and import them into a graph database. Vulnerabilities can then be modeled as appropriate database queries. We show how to model common vulnerabilities and evaluate our framework in a large-scale study, spotting hundreds of vulnerabilities.DasWeb hat sich zu einem komplexen Netz aus hochinteraktiven Seiten und Anwendungen entwickelt, welches wir täglich zu kommerziellen und sozialen Zwecken einsetzen. Dementsprechend ist die Sicherheit von Webanwendungen von höchster Relevanz. Das automatisierte Auffinden von Sicherheitslücken ist ein anspruchsvolles, aber wichtiges Forschungsgebiet mit dem Ziel, Entwickler zu unterstützen und das Web sicherer zu machen. In dieser Arbeit nutzen wir statische Analysemethoden, um automatisiert Lücken in JavaScript- und PHP-Programmen zu entdecken. JavaScript ist clientseitig die wichtigste Sprache des Webs, während PHP auf der Serverseite am weitesten verbreitet ist. Im ersten Teil nutzen wir eine Reihe von Programmtransformationen und Informationsflussanalyse, um den JavaScript HeliosWahl-Client zu untersuchen. Helios ist ein modernesWahlsystem, welches auf konzeptueller Ebene eingehend analysiert wurde und dessen Implementierung als sehr sicher gilt. Wir enthüllen zwei schwere und bis dato unentdeckte Sicherheitslücken. Im zweiten Teil präsentieren wir ein Framework, das es Entwicklern ermöglicht, PHP Code auf frei modellierbare Schwachstellen zu untersuchen. Zu diesem Zweck konstruieren wir sogenannte Code-Property-Graphen und importieren diese anschließend in eine Graphdatenbank. Schwachstellen können nun als geeignete Datenbankanfragen formuliert werden. Wir zeigen, wie wir herkömmliche Schwachstellen modellieren können und evaluieren unser Framework in einer groß angelegten Studie, in der wir hunderte Sicherheitslücken identifizieren.CISP

    Seventh International Joint Conference on Electronic Voting

    Get PDF
    This volume contains papers presented at E-Vote-ID 2022, the Seventh International JointConference on Electronic Voting, held during October 4–7, 2022. This was the first in-personconference following the COVID-19 pandemic, and, as such, it was a very special event forthe community since we returned to the traditional venue in Bregenz, Austria. The E-Vote-IDconference resulted from merging EVOTE and Vote-ID, and 18 years have now elapsed sincethe first EVOTE conference in Austria.Since that conference in 2004, over 1500 experts have attended the venue, including scholars,practitioners, authorities, electoral managers, vendors, and PhD students. E-Vote-ID collectsthe most relevant debates on the development of electronic voting, from aspects relating tosecurity and usability through to practical experiences and applications of voting systems, alsoincluding legal, social, or political aspects, amongst others, turning out to be an importantglobal referent on these issues

    Electronic Voting: 6th International Joint Conference, E-Vote-ID 2021, Virtual Event, October 5–8, 2021: proceedings

    Get PDF
    This volume contains the papers presented at E-Vote-ID 2021, the Sixth International Joint Conference on Electronic Voting, held during October 5–8, 2021. Due to the extraordinary situation brought about by the COVID-19, the conference was held online for the second consecutive edition, instead of in the traditional venue in Bregenz, Austria. The E-Vote-ID conference is the result of the merger of the EVOTE and Vote-ID conferences, with first EVOTE conference taking place 17 years ago in Austria. Since that conference in 2004, over 1000 experts have attended the venue, including scholars, practitioners, authorities, electoral managers, vendors, and PhD students. The conference focuses on the most relevant debates on the development of electronic voting, from aspects relating to security and usability through to practical experiences and applications of voting systems, also including legal, social, or political aspects, amongst others, and has turned out to be an important global referent in relation to this issue

    Sixth International Joint Conference on Electronic Voting E-Vote-ID 2021. 5-8 October 2021

    Get PDF
    This volume contains papers presented at E-Vote-ID 2021, the Sixth International Joint Conference on Electronic Voting, held during October 5-8, 2021. Due to the extraordinary situation provoked by Covid-19 Pandemic, the conference is held online for second consecutive edition, instead of in the traditional venue in Bregenz, Austria. E-Vote-ID Conference resulted from the merging of EVOTE and Vote-ID and counting up to 17 years since the _rst E-Vote conference in Austria. Since that conference in 2004, over 1000 experts have attended the venue, including scholars, practitioners, authorities, electoral managers, vendors, and PhD Students. The conference collected the most relevant debates on the development of Electronic Voting, from aspects relating to security and usability through to practical experiences and applications of voting systems, also including legal, social or political aspects, amongst others; turning out to be an important global referent in relation to this issue. Also, this year, the conference consisted of: · Security, Usability and Technical Issues Track · Administrative, Legal, Political and Social Issues Track · Election and Practical Experiences Track · PhD Colloquium, Poster and Demo Session on the day before the conference E-VOTE-ID 2021 received 49 submissions, being, each of them, reviewed by 3 to 5 program committee members, using a double blind review process. As a result, 27 papers were accepted for its presentation in the conference. The selected papers cover a wide range of topics connected with electronic voting, including experiences and revisions of the real uses of E-voting systems and corresponding processes in elections. We would also like to thank the German Informatics Society (Gesellschaft für Informatik) with its ECOM working group and KASTEL for their partnership over many years. Further we would like to thank the Swiss Federal Chancellery and the Regional Government of Vorarlberg for their kind support. EVote- ID 2021 conference is kindly supported through European Union's Horizon 2020 projects ECEPS (grant agreement 857622) and mGov4EU (grant agreement 959072). Special thanks go to the members of the international program committee for their hard work in reviewing, discussing, and shepherding papers. They ensured the high quality of these proceedings with their knowledge and experience

    Security Hazards when Law is Code.

    Full text link
    As software continues to eat the world, there is an increasing pressure to automate every aspect of society, from self-driving cars, to algorithmic trading on the stock market. As this pressure manifests into software implementations of everything, there are security concerns to be addressed across many areas. But are there some domains and fields that are distinctly susceptible to attacks, making them difficult to secure? My dissertation argues that one domain in particular—public policy and law— is inherently difficult to automate securely using computers. This is in large part because law and policy are written in a manner that expects them to be flexibly interpreted to be fair or just. Traditionally, this interpreting is done by judges and regulators who are capable of understanding the intent of the laws they are enforcing. However, when these laws are instead written in code, and interpreted by a machine, this capability to understand goes away. Because they blindly fol- low written rules, computers can be tricked to perform actions counter to their intended behavior. This dissertation covers three case studies of law and policy being implemented in code and security vulnerabilities that they introduce in practice. The first study analyzes the security of a previously deployed Internet voting system, showing how attackers could change the outcome of elections carried out online. The second study looks at airport security, investigating how full-body scanners can be defeated in practice, allowing attackers to conceal contraband such as weapons or high explosives past airport checkpoints. Finally, this dissertation also studies how an Internet censorship system such as China’s Great Firewall can be circumvented by techniques that exploit the methods employed by the censors themselves. To address these concerns of securing software implementations of law, a hybrid human-computer approach can be used. In addition, systems should be designed to allow for attacks or mistakes to be retroactively undone or inspected by human auditors. By combining the strengths of computers (speed and cost) and humans (ability to interpret and understand), systems can be made more secure and more efficient than a method employing either alone.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120795/1/ewust_1.pd
    corecore