10,733 research outputs found

    Deterministic Real-Time Tree-Walking-Storage Automata

    Full text link
    We study deterministic tree-walking-storage automata, which are finite-state devices equipped with a tree-like storage. These automata are generalized stack automata, where the linear stack storage is replaced by a non-linear tree-like stack. Therefore, tree-walking-storage automata have the ability to explore the interior of the tree storage without altering the contents, with the possible moves of the tree pointer corresponding to those of tree-walking automata. In addition, a tree-walking-storage automaton can append (push) non-existent descendants to a tree node and remove (pop) leaves from the tree. Here we are particularly considering the capacities of deterministic tree-walking-storage automata working in real time. It is shown that even the non-erasing variant can accept rather complicated unary languages as, for example, the language of words whose lengths are powers of two, or the language of words whose lengths are Fibonacci numbers. Comparing the computational capacities with automata from the classical automata hierarchy, we derive that the families of languages accepted by real-time deterministic (non-erasing) tree-walking-storage automata is located between the regular and the deterministic context-sensitive languages. There is a context-free language that is not accepted by any real-time deterministic tree-walking-storage automaton. On the other hand, these devices accept a unary language in non-erasing mode that cannot be accepted by any classical stack automaton, even in erasing mode and arbitrary time. Basic closure properties of the induced families of languages are shown. In particular, we consider Boolean operations (complementation, union, intersection) and AFL operations (union, intersection with regular languages, homomorphism, inverse homomorphism, concatenation, iteration). It turns out that the two families in question have the same properties and, in particular, share all but one of these closure properties with the important family of deterministic context-free languages.Comment: In Proceedings NCMA 2023, arXiv:2309.0733

    Multipass automata and group word problems

    Full text link
    We introduce the notion of multipass automata as a generalization of pushdown automata and study the classes of languages accepted by such machines. The class of languages accepted by deterministic multipass automata is exactly the Boolean closure of the class of deterministic context-free languages while the class of languages accepted by nondeterministic multipass automata is exactly the class of poly-context-free languages, that is, languages which are the intersection of finitely many context-free languages. We illustrate the use of these automata by studying groups whose word problems are in the above classes

    The descriptive complexity approach to LOGCFL

    Full text link
    Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's ``hardest context-free language'' is LOGCFL-complete under quantifier-free BIT-free projections. We then prove that FO with unary groupoidal quantifiers is strictly more expressive with the BIT predicate than without. Considering a particular groupoidal quantifier, we prove that first-order logic with majority of pairs is strictly more expressive than first-order with majority of individuals. As a technical tool of independent interest, we define the notion of an aperiodic nondeterministic finite automaton and prove that FO translations are precisely the mappings computed by single-valued aperiodic nondeterministic finite transducers.Comment: 10 pages, 1 figur

    Context-Free Path Querying by Matrix Multiplication

    Full text link
    Graph data models are widely used in many areas, for example, bioinformatics, graph databases. In these areas, it is often required to process queries for large graphs. Some of the most common graph queries are navigational queries. The result of query evaluation is a set of implicit relations between nodes of the graph, i.e. paths in the graph. A natural way to specify these relations is by specifying paths using formal grammars over the alphabet of edge labels. An answer to a context-free path query in this approach is usually a set of triples (A, m, n) such that there is a path from the node m to the node n, whose labeling is derived from a non-terminal A of the given context-free grammar. This type of queries is evaluated using the relational query semantics. Another example of path query semantics is the single-path query semantics which requires presenting a single path from the node m to the node n, whose labeling is derived from a non-terminal A for all triples (A, m, n) evaluated using the relational query semantics. There is a number of algorithms for query evaluation which use these semantics but all of them perform poorly on large graphs. One of the most common technique for efficient big data processing is the use of a graphics processing unit (GPU) to perform computations, but these algorithms do not allow to use this technique efficiently. In this paper, we show how the context-free path query evaluation using these query semantics can be reduced to the calculation of the matrix transitive closure. Also, we propose an algorithm for context-free path query evaluation which uses relational query semantics and is based on matrix operations that make it possible to speed up computations by using a GPU.Comment: 9 pages, 11 figures, 2 table

    Certified Context-Free Parsing: A formalisation of Valiant's Algorithm in Agda

    Get PDF
    Valiant (1975) has developed an algorithm for recognition of context free languages. As of today, it remains the algorithm with the best asymptotic complexity for this purpose. In this paper, we present an algebraic specification, implementation, and proof of correctness of a generalisation of Valiant's algorithm. The generalisation can be used for recognition, parsing or generic calculation of the transitive closure of upper triangular matrices. The proof is certified by the Agda proof assistant. The certification is representative of state-of-the-art methods for specification and proofs in proof assistants based on type-theory. As such, this paper can be read as a tutorial for the Agda system

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families
    • …
    corecore