1,875 research outputs found

    The multi-vehicle profitable pick up and delivery routing problem with uncertain travel times

    Get PDF
    Abstract This paper addresses a variant of the known selective pickup and delivery problem with time windows. In this problem, a fleet composed of several vehicles with a given capacity should satisfy a set of customers requests consisting in transporting goods from a supplier (pickup location) to a customer (delivery location). The selective aspect consists in choosing the customers to be served on the basis of the profit collected for the service. Motivated by urban settings, wherein road congestion is an important issue, in this paper, we address the profitable pickup and delivery problem with time windows with uncertain travel times. The problem under this assumption, becomes much more involved. The goal is to find the solution that maximizes the net profit, expressed as the difference between the collected revenue, the route cost and the cost associated to the violation the time windows. This study introduces the problem and develops a solution approach to solve it. Very preliminary tests are performed in order to show the efficiency of developed method to cope with the problem at hand

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges

    Traffic assignment optimization models

    Get PDF
    Optimalizace toku v síti je klasickou aplikací matematického programování. Tyto modely mají, mimo jiné, široké uplatnění také v logistice, kde se tak snažíme docílit optimálního rozdělení dopravy, např. vzhledem k maximalizaci zisku, či minimalizaci nákladů. Toto pojetí ovšem často problém idealizuje, poněvadž předpokládá existenci jediného rozhodovatele. Takový přístup je možný ve striktně organizovaných sítích jako např. v logistických sítích přepravních společností, železničních sítích či armádním zásobování. Úloha ''Traffic Assignment Problem'' (TAP) se zaměřuje na dopady teorie her na optimalizaci toku, tj. zkoumá vliv více rozhodovatelů na celkové využití sítě. V práci se zaobíráme úlohou TAP s působením náhodných vlivů, k čemuž využíváme metod stochastické a vícestupňové optimalizace. Dále zkoumáme možnosti zlepšení stávajícího využití sítě za rozhodnutí autoritativního rozhodovatele, kterému je umožněn zásah do samotné struktury sítě, k čemuž využíváme víceúrovňové programování.The class of network flow problems is one of the traditional applications of mathematical optimization. Such problems are widely applicable for example in logistics to achieve an optimal distribution of flow with respect to maximization of profit, or minimization of costs. This approach often leads to simplified models of real problems as it supposes the existence of only one decision maker. Such approach is possible in centralised networks, where an authority exists (such as railway network, military supply, or logistic network used by any company). The Traffic Assignment Problem (TAP) deals with impact of game theory to the network flow problem. Hence, we assume multiple decision makers, where each one of them wants to find his optimal behaviour. In this thesis, we focus on stochastic influences in TAP, for which we use methods of stochastic and multi-stage programming. Further, we concentrate on improvement options for the utilization of the system. Hereby, we consider possible actions of the master decision maker, and discuss them by the presence of multi-level mathematical programming.
    corecore