3,713 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 125

    Get PDF
    This special bibliography lists 323 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1974

    A STUDY ON DYNAMIC SYSTEMS RESPONSE OF THE PERFORMANCE CHARACTERISTICS OF SOME MAJOR BIOPHYSICAL SYSTEMS

    Get PDF
    Dynamic responses of biophysical systems - performance characteristic

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Shear-promoted drug encapsulation into red blood cells: a CFD model and μ-PIV analysis

    Get PDF
    The present work focuses on the main parameters that influence shear-promoted encapsulation of drugs into erythrocytes. A CFD model was built to investigate the fluid dynamics of a suspension of particles flowing in a commercial micro channel. Micro Particle Image Velocimetry (μ-PIV) allowed to take into account for the real properties of the red blood cell (RBC), thus having a deeper understanding of the process. Coupling these results with an analytical diffusion model, suitable working conditions were defined for different values of haematocrit

    Development of Shear-Thinning and Self-Healing Hydrogels Through Guest-Host Interactions for Biomedical Applications

    Get PDF
    Hydrogels have emerged as an invaluable class of materials for biomedical applications, owing in part to their utility as structural, bioinstructive, and cell-laden implants that mimic many aspects of native tissues. Despite their many positive attributes, conventional hydrogels face numerous challenges toward translational therapies, including difficulty in delivery (i.e., invasive implantation) as well as limited control over biophysical properties (i.e., porosity, degradation, and strength). To address these challenges, the overall goal of this dissertation was the development of a class of supramolecular hydrogels that can be implanted in vivo by simple injection and that have tunable properties — either innate to the system or achieved through additional modifications. Toward this, we developed guest-host (GH) hydrogels that undergo supramolecular assembly through complexation of hyaluronic acid (HA) separately modified by adamantane (Ad-HA, guest) and β-cyclodextrin (CD-HA, host). Modular modifications were made to GH hydrogels to enable tuning of biophysical properties, including the incorporation of matrix-metalloproteinase cleavable peptides between HA and Ad to form enzymatically degradable assemblies. Additionally, dual-crosslinking (DC) of methacrylated CD-HA (CD-MeHA) and thiolated Ad-HA (Ad-HA-SH) by Michael addition subsequent to GH assembly was explored to stiffen hydrogels in vivo following injection. Finally, injectable and tough double network (DN) hydrogels were fabricated, where GH hydrogels were formed in the presence of an interpenetrating covalent network (methacrylated HA, MeHA) crosslinked by Michael addition with a dithiol under cytocompatible conditions. Both GH and DC hydrogels were further explored in vivo, with application to attenuate the maladaptive left ventricular (LV) remodeling that occurs following myocardial infarction (MI) that can result in heart failure. DC hydrogels reduced stress within the infarct region, prevented early ventricular expansion and thereby ameliorated progressive LV remodeling. Moreover, the preservation of myocardial geometry reduced incidence and severity of ischemic mitral regurgitation — an undesirable and devastating consequence of LV remodeling. Overall, the body of work represents a novel approach to engineer biomaterials with unique properties toward biomedical therapies
    • …
    corecore