23,367 research outputs found

    Enriched property ontology for knowledge systems : a thesis presented in partial fulfilment of the requirements for the degree of Master of Information Systems in Information Systems, Massey University, Palmerston North, New Zealand

    Get PDF
    "It is obvious that every individual thing or event has an indefinite number of properties or attributes observable in it and might therefore be considered as belonging to an indefinite number of different classes of things" [Venn 1876]. The world in which we try to mimic in Knowledge Based (KB) Systems is essentially extremely complex especially when we attempt to develop systems that cover a domain of discourse with an almost infinite number of possible properties. Thus if we are to develop such systems how do we know what properties we wish to extract to make a decision and how do we ensure the value of our findings are the most relevant in our decision making. Equally how do we have tractable computations, considering the potential computation complexity of systems required for decision making within a very large domain. In this thesis we consider this problem in terms of medical decision making. Medical KB systems have the potential to be very useful aids for diagnosis, medical guidance and patient data monitoring. For example in a diagnostic process in certain scenarios patients may provide various potential symptoms of a disease and have defining characteristics. Although considerable information could be obtained, there may be difficulty in correlating a patient's data to known diseases in an economic and efficient manner. This would occur where a practitioner lacks a specific specialised knowledge. Considering the vastness of knowledge in the domain of medicine this could occur frequently. For example a Physician with considerable experience in a specialised domain such as breast cancer may easily be able to diagnose patients and decide on the value of appropriate symptoms given an abstraction process however an inexperienced Physician or Generalist may not have this facility.[FROM INTRODUCTION

    Updating beliefs with incomplete observations

    Get PDF
    Currently, there is renewed interest in the problem, raised by Shafer in 1985, of updating probabilities when observations are incomplete. This is a fundamental problem in general, and of particular interest for Bayesian networks. Recently, Grunwald and Halpern have shown that commonly used updating strategies fail in this case, except under very special assumptions. In this paper we propose a new method for updating probabilities with incomplete observations. Our approach is deliberately conservative: we make no assumptions about the so-called incompleteness mechanism that associates complete with incomplete observations. We model our ignorance about this mechanism by a vacuous lower prevision, a tool from the theory of imprecise probabilities, and we use only coherence arguments to turn prior into posterior probabilities. In general, this new approach to updating produces lower and upper posterior probabilities and expectations, as well as partially determinate decisions. This is a logical consequence of the existing ignorance about the incompleteness mechanism. We apply the new approach to the problem of classification of new evidence in probabilistic expert systems, where it leads to a new, so-called conservative updating rule. In the special case of Bayesian networks constructed using expert knowledge, we provide an exact algorithm for classification based on our updating rule, which has linear-time complexity for a class of networks wider than polytrees. This result is then extended to the more general framework of credal networks, where computations are often much harder than with Bayesian nets. Using an example, we show that our rule appears to provide a solid basis for reliable updating with incomplete observations, when no strong assumptions about the incompleteness mechanism are justified.Comment: Replaced with extended versio

    Unthinkable Syndromes.\ud Paradoxa of Relevance and Constraints on Diagnostic Categories

    Get PDF
    Bodies of collective knowledge evolve through individual\ud action, like all products that have a use. They also can be\ud evaluated from the engineer's optimizing design perspective.\ud But can individual participants in their making\ud recognize local optimality? Can they work to realize it? Are\ud they unable to act seriosly in a way that would ensure\ud acquisition of a certain suboptimal design feature?\ud One might hope for a simple answer: appeal to innate\ud constraints on the form of categorization. But such constraints\ud cannot wholly pre-empt the need for individual\ud checks and thus for agency. The use of categorial\ud schemes engages facts about the world that do not leap to\ud the eye. They are unlike syntactic or phonological constraints\ud of language, or edge-and orientation-detection\ud algorithms of visual perception.\ud What we should thus be looking for will be modest:\ud constraints, innate or otherwise, that rule out the choice of\ud categorial schemes which are clearly suboptimal and that\ud are, in principle, open to agents' instant observation. We\ud look to a limited if important domain of systematic knowledge:\ud medical diagnostic knowledge

    Optimal discrimination between transient and permanent faults

    Get PDF
    An important practical problem in fault diagnosis is discriminating between permanent faults and transient faults. In many computer systems, the majority of errors are due to transient faults. Many heuristic methods have been used for discriminating between transient and permanent faults; however, we have found no previous work stating this decision problem in clear probabilistic terms. We present an optimal procedure for discriminating between transient and permanent faults, based on applying Bayesian inference to the observed events (correct and erroneous results). We describe how the assessed probability that a module is permanently faulty must vary with observed symptoms. We describe and demonstrate our proposed method on a simple application problem, building the appropriate equations and showing numerical examples. The method can be implemented as a run-time diagnosis algorithm at little computational cost; it can also be used to evaluate any heuristic diagnostic procedure by compariso

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains
    • …
    corecore