543 research outputs found

    On Correcting Inputs: Inverse Optimization for Online Structured Prediction

    Get PDF
    Algorithm designers typically assume that the input data is correct, and then proceed to find "optimal" or "sub-optimal" solutions using this input data. However this assumption of correct data does not always hold in practice, especially in the context of online learning systems where the objective is to learn appropriate feature weights given some training samples. Such scenarios necessitate the study of inverse optimization problems where one is given an input instance as well as a desired output and the task is to adjust the input data so that the given output is indeed optimal. Motivated by learning structured prediction models, in this paper we consider inverse optimization with a margin, i.e., we require the given output to be better than all other feasible outputs by a desired margin. We consider such inverse optimization problems for maximum weight matroid basis, matroid intersection, perfect matchings, minimum cost maximum flows, and shortest paths and derive the first known results for such problems with a non-zero margin. The effectiveness of these algorithmic approaches to online learning for structured prediction is also discussed.Comment: Conference version to appear in FSTTCS, 201

    Nonlinear Matroid Optimization and Experimental Design

    Get PDF
    We study the problem of optimizing nonlinear objective functions over matroids presented by oracles or explicitly. Such functions can be interpreted as the balancing of multi-criteria optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that makes repeated use of matroid intersection, and an algebraic algorithm for vectorial matroids. Our work is partly motivated by applications to minimum-aberration model-fitting in experimental design in statistics, which we discuss and demonstrate in detail

    Coxeter submodular functions and deformations of Coxeter permutahedra

    Full text link
    We describe the cone of deformations of a Coxeter permutahedron, or equivalently, the nef cone of the toric variety associated to a Coxeter complex. This family of polytopes contains polyhedral models for the Coxeter-theoretic analogs of compositions, graphs, matroids, posets, and associahedra. Our description extends the known correspondence between generalized permutahedra, polymatroids, and submodular functions to any finite reflection group.Comment: Minor edits. To appear in Advances of Mathematic

    Algorithms and Hardness for Robust Subspace Recovery

    Full text link
    We consider a fundamental problem in unsupervised learning called \emph{subspace recovery}: given a collection of mm points in Rn\mathbb{R}^n, if many but not necessarily all of these points are contained in a dd-dimensional subspace TT can we find it? The points contained in TT are called {\em inliers} and the remaining points are {\em outliers}. This problem has received considerable attention in computer science and in statistics. Yet efficient algorithms from computer science are not robust to {\em adversarial} outliers, and the estimators from robust statistics are hard to compute in high dimensions. Are there algorithms for subspace recovery that are both robust to outliers and efficient? We give an algorithm that finds TT when it contains more than a dn\frac{d}{n} fraction of the points. Hence, for say d=n/2d = n/2 this estimator is both easy to compute and well-behaved when there are a constant fraction of outliers. We prove that it is Small Set Expansion hard to find TT when the fraction of errors is any larger, thus giving evidence that our estimator is an {\em optimal} compromise between efficiency and robustness. As it turns out, this basic problem has a surprising number of connections to other areas including small set expansion, matroid theory and functional analysis that we make use of here.Comment: Appeared in Proceedings of COLT 201

    Algorithms for Inverse Optimization Problems

    Get PDF
    We study inverse optimization problems, wherein the goal is to map given solutions to an underlying optimization problem to a cost vector for which the given solutions are the (unique) optimal solutions. Inverse optimization problems find diverse applications and have been widely studied. A prominent problem in this field is the inverse shortest path (ISP) problem [D. Burton and Ph.L. Toint, 1992; W. Ben-Ameur and E. Gourdin, 2004; A. Bley, 2007], which finds applications in shortest-path routing protocols used in telecommunications. Here we seek a cost vector that is positive, integral, induces a set of given paths as the unique shortest paths, and has minimum l_infty norm. Despite being extensively studied, very few algorithmic results are known for inverse optimization problems involving integrality constraints on the desired cost vector whose norm has to be minimized. Motivated by ISP, we initiate a systematic study of such integral inverse optimization problems from the perspective of designing polynomial time approximation algorithms. For ISP, our main result is an additive 1-approximation algorithm for multicommodity ISP with node-disjoint commodities, which we show is tight assuming P!=NP. We then consider the integral-cost inverse versions of various other fundamental combinatorial optimization problems, including min-cost flow, max/min-cost bipartite matching, and max/min-cost basis in a matroid, and obtain tight or nearly-tight approximation guarantees for these. Our guarantees for the first two problems are based on results for a broad generalization, namely integral inverse polyhedral optimization, for which we also give approximation guarantees. Our techniques also give similar results for variants, including l_p-norm minimization of the integral cost vector, and distance-minimization from an initial cost vector
    • …
    corecore