261 research outputs found

    Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study

    Full text link
    We study the Kaczmarz methods for solving systems of quadratic equations, i.e., the generalized phase retrieval problem. The methods extend the Kaczmarz methods for solving systems of linear equations by integrating a phase selection heuristic in each iteration and overall have the same per iteration computational complexity. Extensive empirical performance comparisons establish the computational advantages of the Kaczmarz methods over other state-of-the-art phase retrieval algorithms both in terms of the number of measurements needed for successful recovery and in terms of computation time. Preliminary convergence analysis is presented for the randomized Kaczmarz methods

    A randomized Kaczmarz algorithm with exponential convergence

    Full text link
    The Kaczmarz method for solving linear systems of equations is an iterative algorithm that has found many applications ranging from computer tomography to digital signal processing. Despite the popularity of this method, useful theoretical estimates for its rate of convergence are still scarce. We introduce a randomized version of the Kaczmarz method for consistent, overdetermined linear systems and we prove that it converges with expected exponential rate. Furthermore, this is the first solver whose rate does not depend on the number of equations in the system. The solver does not even need to know the whole system, but only a small random part of it. It thus outperforms all previously known methods on general extremely overdetermined systems. Even for moderately overdetermined systems, numerical simulations as well as theoretical analysis reveal that our algorithm can converge faster than the celebrated conjugate gradient algorithm. Furthermore, our theory and numerical simulations confirm a prediction of Feichtinger et al. in the context of reconstructing bandlimited functions from nonuniform sampling
    • …
    corecore