51,698 research outputs found

    On Undetected Error Probability of Binary Matrix Ensembles

    Full text link
    In this paper, an analysis of the undetected error probability of ensembles of binary matrices is presented. The ensemble called the Bernoulli ensemble whose members are considered as matrices generated from i.i.d. Bernoulli source is mainly considered here. The main contributions of this work are (i) derivation of the error exponent of the average undetected error probability and (ii) closed form expressions for the variance of the undetected error probability. It is shown that the behavior of the exponent for a sparse ensemble is somewhat different from that for a dense ensemble. Furthermore, as a byproduct of the proof of the variance formula, simple covariance formula of the weight distribution is derived.Comment: 9 pages, a part of the paper was submitted to ISIT 200

    Undetected error probability for data services in a terrestrial DAB single frequency network

    Get PDF
    DAB (Digital Audio Broadcasting) is the European successor of FM radio. Besides audio services, other services such as traffic information can be provided.\ud An important parameter for data services is the probability of non-recognized or undetected errors in the system. To derive this probability, we propose a bound for the undetected error probability in CRC codes. In addition, results from measurements of a Single Frequency Network (SFN) in Amsterdam were used, where the University of Twente conducted a DAB field trial. The proposed error bound is compared with other error bounds from literature and the results are validated by simulations. Although the proposed bound is less tight than existing bounds, it requires no additional information about the CRC code such\ud as the weight distribution. Moreover, the DAB standard has been extended last year by an Enhanced Packet Mode (EPM) which provides extra protection for data services. An undetected error probability for this mode is also derived. In a realistic user scenario of 10 million users, a 8 kbit/s EPM sub channel can be considered as a system without any undetected errors (Pud = 6 · 10−40). On\ud the other hand, in a normal data sub channel, only 110 packets with undetected errors are received on average each year in the whole system (Pud = 5 · 10−13)

    Reliable Transmission of Short Packets through Queues and Noisy Channels under Latency and Peak-Age Violation Guarantees

    Get PDF
    This work investigates the probability that the delay and the peak-age of information exceed a desired threshold in a point-to-point communication system with short information packets. The packets are generated according to a stationary memoryless Bernoulli process, placed in a single-server queue and then transmitted over a wireless channel. A variable-length stop-feedback coding scheme---a general strategy that encompasses simple automatic repetition request (ARQ) and more sophisticated hybrid ARQ techniques as special cases---is used by the transmitter to convey the information packets to the receiver. By leveraging finite-blocklength results, the delay violation and the peak-age violation probabilities are characterized without resorting to approximations based on large-deviation theory as in previous literature. Numerical results illuminate the dependence of delay and peak-age violation probability on system parameters such as the frame size and the undetected error probability, and on the chosen packet-management policy. The guidelines provided by our analysis are particularly useful for the design of low-latency ultra-reliable communication systems.Comment: To appear in IEEE journal on selected areas of communication (IEEE JSAC

    Which Radial Velocity Exoplanets Have Undetected Outer Companions?

    Full text link
    (Abridged) The observed radial velocity (RV) eccentricity distribution for extrasolar planets in single-planet systems shows that a significant fraction of planets are eccentric (e>0.1e > 0.1). Here we investigate the effects on an RV planet's eccentricity produced by undetected outer companions. We have carried out Monte Carlo simulations of mock RV data to understand this effect and predict its impact on the observed distribution. We first quantify the statistical effect of undetected outer companions and show that this alone cannot explain the observed distribution. We then modify the simulations to consist of two populations, one of zero-eccentricity planets in double-planet systems and the other of single planets drawn from an eccentric distribution. Our simulations show that a good fit to the observed distribution is obtained with 45% zero-eccentricity double-planets and 55% single eccentric planets. Matching the observed distribution allows us to determine the probability that a known RV planet's orbital eccentricity has been biased by an undetected wide-separation companion. Our simulations show that moderately-eccentric planets, with 0.1<e<0.30.1 < e < 0.3 and 0.1<e<0.20.1 < e < 0.2, have a 13\sim 13% and 19\sim 19% probability, respectively, of having an undetected outer companion. We encourage both high-contrast direct imaging and RV follow-up surveys of known RV planets with moderate eccentricities to test our predictions and look for previously undetected outer companions.Comment: 23 pages (12 text, 2 tables, 9 figures). Accepted to the Astrophysical Journal 30 June 200

    Improved error bounds for the erasure/list scheme: the binary and spherical cases

    Full text link
    We derive improved bounds on the error and erasure rate for spherical codes and for binary linear codes under Forney's erasure/list decoding scheme and prove some related results.Comment: 18 pages, 3 figures. Submitted to IEEE Transactions on Informatin Theory in May 2001, will appear in Oct. 2004 (tentative

    Fault-tolerant sub-lithographic design with rollback recovery

    Get PDF
    Shrinking feature sizes and energy levels coupled with high clock rates and decreasing node capacitance lead us into a regime where transient errors in logic cannot be ignored. Consequently, several recent studies have focused on feed-forward spatial redundancy techniques to combat these high transient fault rates. To complement these studies, we analyze fine-grained rollback techniques and show that they can offer lower spatial redundancy factors with no significant impact on system performance for fault rates up to one fault per device per ten million cycles of operation (Pf = 10^-7) in systems with 10^12 susceptible devices. Further, we concretely demonstrate these claims on nanowire-based programmable logic arrays. Despite expensive rollback buffers and general-purpose, conservative analysis, we show the area overhead factor of our technique is roughly an order of magnitude lower than a gate level feed-forward redundancy scheme
    corecore