87,940 research outputs found

    The average mixing matrix signature

    Get PDF
    Laplacian-based descriptors, such as the Heat Kernel Signature and the Wave Kernel Signature, allow one to embed the vertices of a graph onto a vectorial space, and have been successfully used to find the optimal matching between a pair of input graphs. While the HKS uses a heat di↵usion process to probe the local structure of a graph, the WKS attempts to do the same through wave propagation. In this paper, we propose an alternative structural descriptor that is based on continuoustime quantum walks. More specifically, we characterise the structure of a graph using its average mixing matrix. The average mixing matrix is a doubly-stochastic matrix that encodes the time-averaged behaviour of a continuous-time quantum walk on the graph. We propose to use the rows of the average mixing matrix for increasing stopping times to develop a novel signature, the Average Mixing Matrix Signature (AMMS). We perform an extensive range of experiments and we show that the proposed signature is robust under structural perturbations of the original graphs and it outperforms both the HKS and WKS when used as a node descriptor in a graph matching task

    A novel entropy-based graph signature from the average mixing matrix

    Get PDF
    In this paper, we propose a novel entropic signature for graphs, where we probe the graphs by means of continuous-time quantum walks. More precisely, we characterise the structure of a graph through its average mixing matrix. The average mixing matrix is a doubly-stochastic matrix that encapsulates the time-averaged behaviour of a continuous-time quantum walk on the graph, i.e., the ij-th element of the average mixing matrix represents the time-averaged transition probability of a continuous-time quantum walk from the vertex vi to the vertex vj. With this matrix to hand, we can associate a probability distribution with each vertex of the graph. We define a novel entropic signature by concatenating the average Shannon entropy of these probability distributions with their Jensen-Shannon divergence. We show that this new entropic measure can encaspulate the rich structural information of the graphs, thus allowing to discriminate between different structures. We explore the proposed entropic measure on several graph datasets abstracted from bioinformatics databases and we compare it with alternative entropic signatures in the literature. The experimental results demonstrate the effectiveness and efficiency of our method

    Violation and persistence of the K-quantum number in warm rotating nuclei

    Full text link
    The validity of the K-quantum number in rapidly rotating warm nuclei is investigated as a function of thermal excitation energy U and angular momentum I, for the rare-earth nucleus 163Er. The quantal eigenstates are described with a shell model which combines a cranked Nilsson mean-field and a residual two-body interaction, together with a term which takes into account the angular momentum carried by the K-quantum number in an approximate way. K-mixing is produced by the interplay of the Coriolis interaction and the residual interaction; it is weak in the region of the discrete rotational bands (U \lesim 1MeV), but it gradually increases until the limit of complete violation of the K-quantum number is approached around U \sim 2 - 2.5 MeV. The calculated matrix elements between bands having different K-quantum numbers decrease exponentially as a function of ΔK\Delta K, in qualitative agreement with recent data.Comment: 29 pages, 7 figure

    Irregularity in gamma ray source spectra as a signature of axionlike particles

    Full text link
    Oscillations from high energy photons into light pseudoscalar particles in an external magnetic field are expected to occur in some extensions of the standard model. It is usually assumed that those axionlike particles (ALPs) could produce a drop in the energy spectra of gamma ray sources and possibly decrease the opacity of the Universe for TeV gamma rays. We show here that these assumptions are in fact based on an average behavior that cannot happen in real observations of single sources. We propose a new method to search for photon-ALP oscillations, taking advantage of the fact that a single observation would deviate from the average expectation. Our method is based on the search for irregularities in the energy spectra of gamma ray sources. We predict features that are unlikely to be produced by known astrophysical processes and a new signature of ALPs that is easily falsifiable.Comment: 6 pages, 3 figures, matches accepted version, improved discussion on magnetic field models in v

    Production of Stop, Sbottom, and Stau at LEP2

    Get PDF
    We present a comprehensive study of pair production and decay of stops, sbottoms, and staus in e+ee^+ e^- annihilation at LEP2. We give numerical predictions within the Minimal Supersymmetric Standard Model for cross sections and decay rates, and discuss the important signatures. In the case of stau production we also study the polarization of the tau in the decays stau_1 -> tau + neutralino_{1,2}.Comment: 15 pages, LateX, 13 figures appended as uuencoded PS-file. LateX file and figures are also available via anonymous ftp at ftp://info.oeaw.ac.at/pub/hephy-pub/64

    Determining the Spectral Signature of Spatial Coherent Structures

    Full text link
    We applied to an open flow a proper orthogonal decomposition (pod) technique, on 2D snapshots of the instantaneous velocity field, to reveal the spatial coherent structures responsible of the self-sustained oscillations observed in the spectral distribution of time series. We applied the technique to 2D planes out of 3D direct numerical simulations on an open cavity flow. The process can easily be implemented on usual personal computers, and might bring deep insights on the relation between spatial events and temporal signature in (both numerical or experimental) open flows.Comment: 4 page

    Possible Capture of keV Sterile Neutrino Dark Matter on Radioactive beta-decaying Nuclei

    Get PDF
    There exists an observed "desert" spanning six orders of magnitude between O(0.5) eV and O(0.5) MeV in the fermion mass spectrum. We argue that it might accommodate one or more keV sterile neutrinos as a natural candidate for warm dark matter. To illustrate this point of view, we simply assume that there is one keV sterile neutrino nu_4 and its flavor eigenstate nu_s weakly mixes with three active neutrinos. We clarify different active-sterile neutrino mixing factors for the radiative decay of nu_4 and beta decays in a self-consistent parametrization. A direct detection of this keV sterile neutrino dark matter in the laboratory is in principle possible since the nu_4 component of nu_e can leave a distinct imprint on the electron energy spectrum when it is captured on radioactive beta-decaying nuclei. We carry out an analysis of its signatures in the capture reactions nu_e + ^{3}H \to ^{3}He + e^- and nu_e + ^{106}Ru \to ^{106}Rh + e^- against the beta-decay backgrounds, and conclude that this experimental approach might not be hopeless in the long run.Comment: 14 pages, 3 figures, more discussions and references added. To appear in PL
    corecore