109,804 research outputs found

    Automatic transformation of raw clinical data into clean data using decision tree learning combining with string similarity algorithm

    Get PDF
    It is challenging to conduct statistical analyses of complex scientific datasets. It is a timeconsuming process to find the relationships within data for whether a scientist or a statistician. The process involves preprocessing the raw data, the selection of appropriate statistics, performing analysis and providing correct interpretations, among which, the data pre-processing is tedious and a particular time drain. In a large amount of data provided for analysis, there is not a standard for recording the information, and some errors either of spelling, typing or transmission. Thus, there will be many expressions for the same meaning in the data, but it will be impossible for analysis system to automatically deal with these inaccuracies. What is needed is an automatic method for transforming the raw clinical data into data which it is possible to process automatically. In this paper we propose a method combining decision tree learning with the string similarity algorithm, which is fast and accuracy to clinical data cleaning. Experimental results show that it outperforms individual string similarity algorithms and traditional data cleaning process

    Artificial scientists

    No full text

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Linked Data for the Natural Sciences. Two Use Cases in Chemistry and Biology

    Get PDF
    Wiljes C, Cimiano P. Linked Data for the Natural Sciences. Two Use Cases in Chemistry and Biology. In: Proceedings of the Workshop on the Semantic Publishing (SePublica 2012). 2012: 48-59.The Web was designed to improve the way people work together. The Semantic Web extends the Web with a layer of Linked Data that offers new paths for scientific publishing and co-operation. Experimental raw data, released as Linked Data, could be discovered automatically, fostering its reuse and validation by scientists in different contexts and across the boundaries of disciplines. However, the technological barrier for scientists who want to publish and share their research data as Linked Data remains rather high. We present two real-life use cases in the fields of chemistry and biology and outline a general methodology for transforming research data into Linked Data. A key element of our methodology is the role of a scientific data curator, who is proficient in Linked Data technologies and works in close co-operation with the scientist

    myTea: Connecting the Web to Digital Science on the Desktop

    No full text
    Bioinformaticians regularly access the hundreds of databases and tools that are available to them on the Web. None of these tools communicate with each other, causing the scientist to copy results manually from a Web site into a spreadsheet or word processor. myGrids' Taverna has made it possible to create templates (workflows) that automatically run searches using these databases and tools, cutting down what previously took days of work into hours, and enabling the automated capture of experimental details. What is still missing in the capture process, however, is the details of work done on that material once it moves from the Web to the desktop: if a scientist runs a process on some data, there is nothing to record why that action was taken; it is likewise not easy to publish a record of this process back to the community on the Web. In this paper, we present a novel interaction framework, built on Semantic Web technologies, and grounded in usability design practice, in particular the Making Tea method. Through this work, we introduce a new model of practice designed specifically to (1) support the scientists' interactions with data from the Web to the desktop, (2) provide automatic annotation of process to capture what has previously been lost and (3) associate provenance services automatically with that data in order to enable meaningful interrogation of the process and controlled sharing of the results

    Building the Scientific Modeling Assistant: An interactive environment for specialized software design

    Get PDF
    The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type

    Automatic Differentiation Variational Inference

    Full text link
    Probabilistic modeling is iterative. A scientist posits a simple model, fits it to her data, refines it according to her analysis, and repeats. However, fitting complex models to large data is a bottleneck in this process. Deriving algorithms for new models can be both mathematically and computationally challenging, which makes it difficult to efficiently cycle through the steps. To this end, we develop automatic differentiation variational inference (ADVI). Using our method, the scientist only provides a probabilistic model and a dataset, nothing else. ADVI automatically derives an efficient variational inference algorithm, freeing the scientist to refine and explore many models. ADVI supports a broad class of models-no conjugacy assumptions are required. We study ADVI across ten different models and apply it to a dataset with millions of observations. ADVI is integrated into Stan, a probabilistic programming system; it is available for immediate use
    • …
    corecore