47,319 research outputs found

    Automatic Generation of Transducer Models for Bus-Based MPSoC Design

    Get PDF
    This paper presents methods for automatic generation of models of Transducer, a highly flexible communication module for interfacing Multiprocessor System-on-Chip (MPSoC) components. We describe the transducer architecture, comprising the bus interface, high-level communication controllers and buffer management blocks. The well-defined architecture of the transducer enables automatic generation of its Transaction-level and Register-transfer level (RTL) models. Moreover, the simple interface of the transducer provides for a well-defined software interface, making it easy to update the software after changes in MPSoC platform. Our experimental results show that MPSoC design for industrial-size applications, such as MP3 decoder and JPEG encoder, greatly benefits from automatic generation of transducer models. We found productivity gains of 9-23× due to significant savings in modeling effort. On the quality axis, we show that MPSoC communication design using automatically generated transducers has very little overhead in communication delay over a fully connected point-to-point communication architecture. Finally, we show that our automatically generated TLMs greatly reduce the system-level modeling time and provide a fast executable model for early functional validation

    Civil aircraft advanced avionics architectures - an insight into saras avionics, present and future perspective

    Get PDF
    Traditionally, the avionics architectures being implemented are of federated nature, which means that each avionics function has its own independent, dedicated fault-tolerant computing resources. Federated architecture has great advantage of inherent fault containment and at the same time envelops a potential risk of massive use of resources resulting in increase in weight, looming, cost and maintenance as well. With the drastic advancement in the computer and software technologies, the aviation industry is gradually moving towards the use of Integrated Modular Avionics (IMA) for civil transport aircraft, potentially leading to multiple avionics functions housed in each hardware platform. Integrated Modular Avionics is the most important concept of avionics architecture for next generation aircrafts. SARAS avionics suite is purely federated with almost glass cockpit architecture complying to FAR25. The Avionics activities from the inception to execution are governed by the regulations and procedures under the review of Directorate General of Civil Aviation (DGCA). Every phase of avionics activity has got its own technically involvement to make the system perfect. In addition the flight data handling, monitoring and analysis is again a thrust area in the civil aviation industry leading to safety and reliability of the machine and the personnel involved. NAL has been in this area for more than two decades and continues to excel in these technologies

    An Architecture Description Language for Embedded Hardware Platforms

    Get PDF
    Embedded software development relies on various tools - compilers, simulators, execution time estimators - that encapsulate a more-or-less detailed knowledge of the target hardware platform. These tools can be costly to develop and maintain:significant benefits could be expected if they were automatically generated from models expressed in a dedicated modeling language.In contrast with Hardware Description Languages (HDLs), that focus on the internal structure and behavior of an electronic board of chip, Hardware Architecture Description Languages consider hardware as a platform for software execution. Such a platform will be described in terms of low-level programming interface (processor instruction set),resources (processing elements, memory and peripheral devices) and elementary services (arithmetic and logic operations, bus transactions).This paper gives an overview of HARMLESS (Hardware ARchitecture Modeling Language for Embedded Software Simulation), a new domain-specific language for modeling embedded hardware platforms. HARMLESS and its associated tools follow the Model-Driven Engineering philosophy: metamodeling and model transformations have been successfully applied to the automatic generation of processor simulators

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team

    An Architecture Description Language for Embedded Hardware Platforms

    Get PDF
    Embedded software development relies on various tools - compilers, simulators, execution time estimators - that encapsulate a more-or-less detailed knowledge of the target hardware platform. These tools can be costly to develop and maintain:significant benefits could be expected if they were automatically generated from models expressed in a dedicated modeling language.In contrast with Hardware Description Languages (HDLs), that focus on the internal structure and behavior of an electronic board of chip, Hardware Architecture Description Languages consider hardware as a platform for software execution. Such a platform will be described in terms of low-level programming interface (processor instruction set),resources (processing elements, memory and peripheral devices) and elementary services (arithmetic and logic operations, bus transactions).This paper gives an overview of HARMLESS (Hardware ARchitecture Modeling Language for Embedded Software Simulation), a new domain-specific language for modeling embedded hardware platforms. HARMLESS and its associated tools follow the Model-Driven Engineering philosophy: metamodeling and model transformations have been successfully applied to the automatic generation of processor simulators
    corecore