5 research outputs found

    The AutoMat CVIM - A Scalable Data Model for Automotive Big Data Marketplaces

    Full text link
    In the past years, connectivity has been introduced in automotive production series, enabling vehicles as highly mobile Internet of Things sensors and participants. The Horizon 2020 research project AutoMat addressed this scenario by building a vehicle big data marketplace in order to leverage and exploit crowd-sourced sensor data, a so far unexcavated treasure. As part of this project the Common Vehicle Information Model (CVIM) as harmonized data model has been developed. The CVIM allows a common understanding and generic representation, brand-independent throughout the whole data value and processing chain. The demonstrator consists of CVIM vehicle sensor data, which runs through the different components of the whole AutoMat vehicle big data processing pipeline. Finally, at the example of a traffic measurement service the data of a whole vehicle fleet is aggregated and evaluated

    A REVIEW ON INTERNET OF THINGS ARCHITECTURE FOR BIG DATA PROCESSING

    Get PDF
    The importance of big data implementations is increased due to large amount of gathered data via the online gates. The businesses and organizations would benefit from the big data analysis i.e. analyze the political, market, and social interests of the people. The Internet of Things (IoT) presents many facilities that support the big data transfer between various Internet objects. The integration between the big data and IoT offer a lot of implementations in the daily life like GPS, Satellites, and airplanes tracking. There are many challenges face the integration between big data transfer and IoT technology. The main challenges are the transfer architecture, transfer protocols, and the transfer security. The main aim of this paper is to review the useful architecture of IoT for the purpose of big data processing with the consideration of the various requirements such as the transfer protocol. This paper also reviews other important issues such as the security requirements and the multiple IoT applications. In addition, the future directions of the IoT-Big data are explained in this paper

    The L3Pilot Data Management Toolchain for a Level 3 Vehicle Automation Pilot

    Get PDF
    As industrial research in automated driving is rapidly advancing, it is of paramount importance to analyze field data from extensive road tests. This paper investigates the design and development of a toolchain to process and manage experimental data to answer a set of research questions about the evaluation of automated driving functions at various levels, from technical system functioning to overall impact assessment. We have faced this challenge in L3Pilot, the first comprehensive test of automated driving functions (ADFs) on public roads in Europe. L3Pilot is testing ADFs in vehicles made by 13 companies. The tested functions are mainly of Society of Automotive Engineers (SAE) automation level 3, some of them of level 4. In this context, the presented toolchain supports various confidentiality levels, and allows cross-vehicle owner seamless data management, with the efficient storage of data and their iterative processing with a variety of analysis and evaluation tools. Most of the toolchain modules have been developed to a prototype version in a desktop/cloud environment, exploiting state-of-the-art technology. This has allowed us to efficiently set up what could become a comprehensive edge-to-cloud reference architecture for managing data in automated vehicle tests. The project has been released as open source, the data format into which all vehicular signals, recorded in proprietary formats, were converted, in order to support efficient processing through multiple tools, scalability and data quality checking. We expect that this format should enhance research on automated driving testing, as it provides a shared framework for dealing with data from collection to analysis. We are confident that this format, and the information provided in this article, can represent a reference for the design of future architectures to implement in vehicles

    Quantified vehicles: data, services, ecosystems

    Get PDF
    Advancing digitalization has shown the potential of so-called Quantified Vehicles for gathering valuable sensor data about the vehicle itself and its environment. Consequently, (vehicle) Data has become an important resource, which can pave the way to (Data-driven) Services. The (Data-driven Service) Ecosystem of actors that collaborate to ultimately generate services, has only shaped up in recent years. This cumulative dissertation summarizes the author's contributions and includes a synopsis as well as 14 peer-reviewed publications, which contribute to answer the three research questions.Die Digitalisierung hat das Potenzial für Quantified Vehicles aufgezeigt, um Sensordaten über das Fahrzeug selbst und seine Umgebung zu sammeln. Folglich sind (Fahrzeug-)Daten zu einer wichtigen Ressource der Automobilindustrie geworden, da sie auch (datengetriebene) Services ermöglichen. Es bilden sich Ökosysteme von Akteuren, die zusammenarbeiten, um letztlich Services zu generieren. Diese kumulative Dissertation fasst die Beiträge des Autors zusammen und enthält eine Synopsis sowie 14 begutachtete Veröffentlichungen, die zur Beantwortung der drei Forschungsfragen beitragen

    Big Data Management Towards Impact Assessment of Level 3 Automated Driving Functions

    Get PDF
    As industrial research in automated driving is rapidly advancing, it is of paramount importance to analyze field data from extensive road tests. This thesis presents a research work done in L3Pilot, the first comprehensive test of automated driving functions (ADFs) on public roads in Europe. L3Pilot is now completing the test of ADFs in vehicles by 13 companies. The tested functions are mainly of Society of Automotive Engineers (SAE) automation level 3, some of level 4. The overall collaboration among several organizations led to the design and development of a toolchain aimed at processing and managing experimental data sharable among all the vehicle manufacturers to answer a set of 100+ research questions (RQs) about the evaluation of ADFs at various levels, from technical system functioning to overall impact assessment. The toolchain was designed to support a coherent, robust workflow based on Field opErational teSt supporT Action (FESTA), a well-established reference methodology for automotive piloting. Key challenges included ensuring methodological soundness and data validity while protecting the vehicle manufacturers\u2019 intellectual property. Through this toolchain, the project set up what could become a reference architecture for managing research data in automated vehicle tests. In the first step of the workflow, the methodology partners captured the quantitative requirements of each RQ in terms of the relevant data needed from the tests. L3Pilot did not intend to share the original vehicular signal timeseries, both for confidentiality reasons and for the enormous amount of data that would have been shared. As the factual basis for quantitatively answering the RQs, a set of performance indicators (PIs) was defined. The source vehicular signals were translated from their proprietary format into the common data format (CDF), which was defined by L3Pilot to support efficient processing through multiple partners\u2019 tools, and data quality checking. The subsequent vi performance indicator (PI) computation step consists in synthesizing the vehicular time series into statistical syntheses to be stored in the project-shared database, namely the Consolidated Database (CDB). Computation of the PIs is segmented based on experimental condition, road type and driving scenarios, as required to answer the RQs. The supported analysis concerns both objective data, from vehicular sensors, and subjective data from user (test drivers and passengers) questionnaires. The overall L3Pilot toolchain allowed setting up a data management process involving several partners (vehicle manufacturers, research institutions, suppliers, and developers), with different perspectives and requirements. The system was deployed and used by all the relevant partners in the pilot sites. The experience highlights the importance of the reference methodology to theoretically inform and coherently manage all the steps of the project and the need for effective and efficient tools, to support the everyday work of all the involved research teams, from vehicle manufacturers to data analysts
    corecore