28,801 research outputs found

    Interests Diffusion in Social Networks

    Full text link
    Understanding cultural phenomena on Social Networks (SNs) and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.Comment: 30 pages 13 figs 4 table

    Computational Sociolinguistics: A Survey

    Get PDF
    Language is a social phenomenon and variation is inherent to its social nature. Recently, there has been a surge of interest within the computational linguistics (CL) community in the social dimension of language. In this article we present a survey of the emerging field of "Computational Sociolinguistics" that reflects this increased interest. We aim to provide a comprehensive overview of CL research on sociolinguistic themes, featuring topics such as the relation between language and social identity, language use in social interaction and multilingual communication. Moreover, we demonstrate the potential for synergy between the research communities involved, by showing how the large-scale data-driven methods that are widely used in CL can complement existing sociolinguistic studies, and how sociolinguistics can inform and challenge the methods and assumptions employed in CL studies. We hope to convey the possible benefits of a closer collaboration between the two communities and conclude with a discussion of open challenges.Comment: To appear in Computational Linguistics. Accepted for publication: 18th February, 201

    WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking

    Full text link
    We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author's publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author's expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author's documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author's expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling author's profile via our "semantic" graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University
    corecore