573 research outputs found

    Designing and prototyping WebRTC and IMS integration using open source tools

    Get PDF
    WebRTC, or Web Real-time Communications, is a collection of web standards that detail the mechanisms, architectures and protocols that work together to deliver real-time multimedia services to the web browser. It represents a significant shift from the historical approach of using browser plugins, which over time, have proven cumbersome and problematic. Furthermore, it adopts various Internet standards in areas such as identity management, peer-to-peer connectivity, data exchange and media encoding, to provide a system that is truly open and interoperable. Given that WebRTC enables the delivery of multimedia content to any Internet Protocol (IP)-enabled device capable of hosting a web browser, this technology could potentially be used and deployed over millions of smartphones, tablets and personal computers worldwide. This service and device convergence remains an important goal of telecommunication network operators who seek to enable it through a converged network that is based on the IP Multimedia Subsystem (IMS). IMS is an IP-based subsystem that sits at the core of a modern telecommunication network and acts as the main routing substrate for media services and applications such as those that WebRTC realises. The combination of WebRTC and IMS represents an attractive coupling, and as such, a protracted investigation could help to answer important questions around the technical challenges that are involved in their integration, and the merits of various design alternatives that present themselves. This thesis is the result of such an investigation and culminates in the presentation of a detailed architectural model that is validated with a prototypical implementation in an open source testbed. The model is built on six requirements which emerge from an analysis of the literature, including previous interventions in IMS networks and a key technical report on design alternatives. Furthermore, this thesis argues that the client architecture requires support for web-oriented signalling, identity and call handling techniques leading to a potential for IMS networks to natively support these techniques as operator networks continue to grow and develop. The proposed model advocates the use of SIP over WebSockets for signalling and DTLS-SRTP for media to enable one-to-one communication and can be extended through additional functions resulting in a modular architecture. The model was implemented using open source tools which were assembled to create an experimental network testbed, and tests were conducted demonstrating successful cross domain communications under various conditions. The thesis has a strong focus on enabling ordinary software developers to assemble a prototypical network such as the one that was assembled and aims to enable experimentation in application use cases for integrated environments

    Securing media streams in an Asterisk-based environment and evaluating the resulting performance cost

    Get PDF
    When adding Confidentiality, Integrity and Availability (CIA) to a multi-user VoIP (Voice over IP) system, performance and quality are at risk. The aim of this study is twofold. Firstly, it describes current methods suitable to secure voice streams within a VoIP system and make them available in an Asterisk-based VoIP environment. (Asterisk is a well established, open-source, TDM/VoIP PBX.) Secondly, this study evaluates the performance cost incurred after implementing each security method within the Asterisk-based system, using a special testbed suite, named DRAPA, which was developed expressly for this study. The three security methods implemented and studied were IPSec (Internet Protocol Security), SRTP (Secure Real-time Transport Protocol), and SIAX2 (Secure Inter-Asterisk eXchange 2 protocol). From the experiments, it was found that bandwidth and CPU usage were significantly affected by the addition of CIA. In ranking the three security methods in terms of these two resources, it was found that SRTP incurs the least bandwidth overhead, followed by SIAX2 and then IPSec. Where CPU utilisation is concerned, it was found that SIAX2 incurs the least overhead, followed by IPSec, and then SRTP

    Enterprise network convergence: path to cost optimization

    Get PDF
    During the past two decades, telecommunications has evolved a great deal. In the eighties, people were using television, radio and telephone as their communication systems. Eventually, the introduction of the Internet and the WWW immensely transformed the telecommunications industry. This internet revolution brought about a huge change in the way businesses communicated and operated. Enterprise networks now had an increasing demand for more bandwidth as they started to embrace newer technologies. The requirements of the enterprise networks grew as the applications and services that were used in the network expanded. This stipulation for fast and high performance communication systems has now led to the emergence of converged network solutions. Enterprises across the globe are investigating new ways to implement voice, video, and data over a single network for various reasons – to optimize network costs, to restructure their communication system, to extend next generation networking abilities, or to bridge the gap between their corporate network and the existing technological progress. To date, organizations had multiple network services to support a range of communication needs. Investing in this type of multiple communication infrastructures limits the networks ability to provide resourceful bandwidth optimization services throughout the system. Thus, as the requirements for the corporate networks to handle dynamic traffic grow day by day, the need for a more effective and efficient network arises. A converged network is the solution for enterprises aspiring to employ advanced applications and innovative services. This thesis will emphasize the importance of converging network infrastructure and prove that it leads to cost savings. It discusses the characteristics, architecture, and relevant protocols of the voice, data and video traffic over both traditional infrastructure and converged architecture. While IP-based networks present excellent quality for non real-time data networking, the network by itself is not capable of providing reliable, quality and secure services for real-time traffic. In order for IP networks to perform reliable and timely transmission of real-time data, additional mechanisms to reduce delay, jitter and packet loss are required. Therefore, this thesis will also discuss the important mechanisms for running real-time traffic like voice and video over an IP network. Lastly, it will also provide an example of an enterprise network specifications (voice, video and data), and present an in depth cost analysis of a typical network vs. a converged network to prove that converged infrastructures provide significant savings

    Design and implementation aspects of open source next generation networks (NGN) test-bed software toolkits

    Get PDF
    Informations- und Kommunikationstechnologien bilden seit langem das immer wichtiger werdende RĂŒckgrat der weltweiten Wirtschaft und Telekommunikation, in der speziell Telekommunikationsnetze und -dienste einen elementaren Anteil tragen. Durch die Konvergenz von Telekommunikations- und Internettechnologien hat sich die Telekommunikationslandschaft in der letzten Dekade drastisch verĂ€ndert. Bislang geschlossene Telekommunikationsumgebungen haben sich imWandel zum sogenannten Next Generation Network (NGN) hinsichtlich unterstĂŒtzter Zugangsnetztechnologien und angebotener multimedialer Anwendungen sowie der eingesetzten Protokolle und Dienste zu komplexen, hochdynamischen, Multi-Service Infrastrukturen gewandelt. Die Kontrollschicht solcher NGNs ist dabei von ĂŒbergeordneter Bedeutung, da diese zwischen den Zugangsnetzen und den Anwendungen sitzt. Der Einsatz und die Optimierung des IP-Multimedia Subsystem (IMS) wurde in diesem Kontext Jahrelang erforscht und diskutiert und es reprĂ€sentiert heute die weltweit anerkannte Kontrollplattform fĂŒr feste und mobile Telekommunikationsnetze. Die Forschung an Protokollen und Diensten in diesen NGN Umgebungen ist aufgrund der Konvergenz von Technologien, Anwendungen und Business Modellen sowie der hohen Dynamik aber kurzen Innovationszyklen hochkomplex. Der frĂŒhzeitigen Zugang zu herstellerunabhĂ€ngigen – aber dicht an der Produktwelt angelehnten - Validierungsinfrastrukturen, sogenannten offenen Technologietest-beds, kurz Test-beds, ist daher fĂŒr Forschungs- und Entwicklungsabteilungen unerlĂ€sslich Die vorliegende Dissertation beschreibt die umfangreiche Forschungsarbeit des Autors auf dem Gebiet der offenen NGN Test-beds ĂŒber die letzten neun Jahre und konzentriert sich dabei auf Entwurf, Entwicklung und Bereitstellung des Open Source IMS Core Projekt, das seit Jahren die Grundlage fĂŒr eine Vielzahl von NGN Test-beds und zahllose NGN Forschungs- und Entwicklungsprojekte im akademischen als auch Industrienahen Umfeld rund um den Globus darstellt. Dabei wird ein großer Schwerpunkt auf die Anforderungen hinsichtlich FlexibilitĂ€t, Leistung, FunktionalitĂ€tsumfang und InteroperabilitĂ€t, sowie elementare Designprinzipien von Test-bedwerkzeugen gelegt. Die Arbeit beschreibt und bewertet darĂŒberhinaus den Einsatz von Open Source Prinzipien und veranschaulicht die Vorteile dieses Ansatzes hinsichtlich Einfluss und Nachhaltigkeit der Forschung anhand des Aufbaus einer globalen Open Source IMS Core (OpenIMSCore) Forschungs-Community. Außerdem veranschaulicht die Arbeit zum Ende die Wiederverwendbarkeit der wesentlichen angewendeten Designprinzipien an anderen maßgeblich durch den Autor entwickelten Test-bed Werkzeugen, insbesondere dem Open Evolved Packet Core (OpenEPC) fĂŒr die nahtlose Integration verschiedener Breitbandnetztechnologien.Information and Communication Technologies provide for a long time already the backbone of telecommunication networks, such that communication services represent an elementary foundation of today’s globally connected economy. The telecommunication landscape has experienced dramatic transformations through the convergence of the Telecom and the Internet worlds. The previously closed telecommunication domain is currently transforming itself through the so-called NGN evolution into a highly dynamic multiservice infrastructure, supporting rich multimedia applications, as well as providing comprehensive support for various access technologies. The control layer of such NGNs is then of paramount importance, as representing the convergent mediator between access and services. The use and the optimization of the IP-Multimedia Subsystem (IMS) was researched and considered in this domain for many years now, such that today it represents the world-wide recognized control platform for fixed and mobile NGNs. Research on protocols and services for such NGN architectures, due to the convergence of technologies, applications and business models, as well as for enabling highly dynamic and short innovation cycles, is highly complex and requires early access to vendor independent - yet close to real life systems - validation environments, the so-called open technology test-beds. The present thesis describes the extensive research of the author over the last nine years in the field of open NGN test-beds. It focuses on the design, development and deployment of the Open Source IMS Core project, which represents since years the foundation of numerous NGN test-beds and countless NGN Research & Development projects in the academia as well as the industry domain around the globe. A major emphasis is given for ensuring flexibility, performance, reference functionality and inter-operability, as well as satisfying elementary design principles of such test-bed toolkits. The study also describes and evaluates the use of Open Source principles, highlighting the advantages of using it in regard to the creation, impact and sustainability of a global OpenIMSCore research community. Moreover, the work documents that the essential design principles and methodology employed can be reused in a generic way to create test-bed toolkits in other technology domains. This is shown by introducing the OpenEPC project, which provides for seamless integration of different mobile broadband technologies

    A Decentralized Session Management Framework for Heterogeneous Ad-Hoc and Fixed Networks

    Get PDF
    Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.The invention of the phone has radically changed the way people communicate, as it allowed persons to get in contact instantly no matter of their location. However, phone communication has been confined for decades to a fixed location, be it one's own house or a phone boot. The widespread affirmation of cellular technologies has had for fixed telephony a similar impact that the invention of the phone has had on communications years before. With mobile phones, people are enabled to talk with each other anytime and anywhere. Internet has also revolutionized the way people communicate. E-mails have soon become one of the Internet killer applications. Later on, instant messaging, popularly known as chatting, has gained huge consensus among net surfers. Only recently, the use of the Internet for voice communication is becoming mainstream, and the so called Voice over IP (VoIP) applications (Skype is probably the most famous for the masses) are becoming common use. Despite its popularity, Internet still suffers from the inherent limitations that affected early telephony: it is fixed. The usage of Internet on the move still does not constitute the easiest and most satisfactory user experience, due to capabilities and limitations of the access technology, terminals, services and applications. Efforts for mobilizing the Internet are ongoing both in the industrial and in the academic worlds, but several bricks are needed to build the wall of mobile Internet. This dissertation provides one of these bricks, describing a solution that allows the deployment of multimedia applications (chat, VoIP, gaming) in mobile environments. In other words, this dissertation gives solutions for facilitating ubiquitous Internet-based communication, anytime and anywhere. The vision that we want to become true is that Internet must become mobile in the same way as fixed telephony has become mobile thanks to the cellular technology. More than this, we do not want that users are limited by the presence of an infrastructure to communicate with each other. In order to achieve this, we present solutions to deploy Internet-based services and applications in environments where no support from servers is available. In other words, we enable direct device-to-device, user-to-user Internet communication. Our contribution is mainly focused on the steps needed to establish the communication, the so called session establishment or signaling phase. We have validated our signaling framework by building a chat application that utilizes its features and works in server-less environments. The custom server-less solution does not prohibit to connect at the same time with the Internet, so that one can engage in a chess game using direct communication with a person in the proximity while having a chat in progress with a friend using standard Internet services. The challenge that we had to face is that Internet services and applications are usually built implying support from a centralized server. In order to deploy direct user-to-user Internet services, while maintaining interoperability with mainstream services, we had to enhance native Internet services to work without infrastructure support, without sacrificing interoperability with standard Internet applications. To conclude, we have placed our brick on the still yet to be completed wall of mobile Internet. Our hope is that one day, thanks also to this brick, everybody will be able to enjoy Internet-based applications as easily as now it is possible to use mobile telephony services

    Overlay networks for smart grids

    Get PDF
    • 

    corecore