65,803 research outputs found

    Central Auditory Processing Disorders : Effects of Age and Hearing Loss to Electrophysiological and Behavioral Responses

    Get PDF
    Introduction. Central auditory processing involve normal sound perception, speech recognition, ability of cognition and memory. Accordingly speech recognition difficulties may manifest due to changes at any segment of auditory processing. Cortical auditory evoked potentials (CAEPs) and behavioral measures provide insight into the neural mechanisms underlying speech recognition. These disorders are observed both in young and elderly population. Aim of the study. To evaluate central auditory processing for subjects of different age and hearing level through the presentation of noise using CAEPs and behavioral measures of speech discrimination. However due to complicated connectivity in auditory pathway it is difficult to identify the central auditory processing damage. Behavioral tests in conjunction with electrophysiological examination will reveal more complicated information for differenciation between peripheral and central auditory processing disorders. Materials and methods. Three groups of subjects participated: young normal hearing, young hearing-impaired and elderly hearing– impaired subjects. To minimaze subject variables, the CAEPs (wave peaks P1,N1,P2,N2,P3,N3 in miliseconds) was investigated using passive listening paradigme. The CAEPs were elicited by 1,1s change in frequency 1000 Hz and 2000 Hz in pure tones presented at 65, 70 and 75 dB SPL. Sentence recognition tests in quite and noise, Digit Pairs (DP) and Word Pairs (WP) were developed in Latvian language prior to investigation. They were presented to all subjects. Results. The most prominent finding was the increased latency of P3, N3 in elderly and also in younger hearing impaired adults groups and highly differed within groups. More prolonged latencies were find of N1, P2 in elderly hearing impaired group than in younger hearing impaired group adults. Conclusions. During this investigation the CAEPs are performed for the first time in our clinic therefore the main standarts are determined for our laboratory. The speech recognition tests (Sentence recognition test, DD, DW) are developed in Latvian. The present findings suggest patterns of CAEP are variable within individuals however shows that auditory perception and cognitive function is not only a result of aging and must be associated with a general slowing of neuronal processing or decreased neuronal synchrony within the central auditory nervous system. Determination of central auditory processing capacity level is of crucial significance to prognose and evaluate the hearing result after hearing prosthetics and to appraise indications for hearing prosthetics, cochlear and middle ear implantation including.publishersversionPeer reviewe

    Bio-inspired Dynamic Formant Tracking for Phonetic Labelling

    Get PDF
    It is a known fact that phonetic labeling may be relevant in helping current Automatic Speech Recognition (ASR) when combined with classical parsing systems as HMM's by reducing the search space. Through the present paper a method for Phonetic Broad-Class Labeling (PCL) based on speech perception in the high auditory centers is described. The methodology is based in the operation of CF (Characteristic Frequency) and FM (Frequency Modulation) neurons in the cochlear nucleus and cortical complex of the human auditory apparatus in the automatic detection of formants and formant dynamics on speech. Results obtained informant detection and dynamic formant tracking are given and the applicability of the method to Speech Processing is discussed

    Information Loss in the Human Auditory System

    Full text link
    From the eardrum to the auditory cortex, where acoustic stimuli are decoded, there are several stages of auditory processing and transmission where information may potentially get lost. In this paper, we aim at quantifying the information loss in the human auditory system by using information theoretic tools. To do so, we consider a speech communication model, where words are uttered and sent through a noisy channel, and then received and processed by a human listener. We define a notion of information loss that is related to the human word recognition rate. To assess the word recognition rate of humans, we conduct a closed-vocabulary intelligibility test. We derive upper and lower bounds on the information loss. Simulations reveal that the bounds are tight and we observe that the information loss in the human auditory system increases as the signal to noise ratio (SNR) decreases. Our framework also allows us to study whether humans are optimal in terms of speech perception in a noisy environment. Towards that end, we derive optimal classifiers and compare the human and machine performance in terms of information loss and word recognition rate. We observe a higher information loss and lower word recognition rate for humans compared to the optimal classifiers. In fact, depending on the SNR, the machine classifier may outperform humans by as much as 8 dB. This implies that for the speech-in-stationary-noise setup considered here, the human auditory system is sub-optimal for recognizing noisy words

    Impaired Auditory Temporal Selectivity in the Inferior Colliculus of Aged Mongolian Gerbils

    Get PDF
    Aged humans show severe difficulties in temporal auditory processing tasks (e.g., speech recognition in noise, low-frequency sound localization, gap detection). A degradation of auditory function with age is also evident in experimental animals. To investigate age-related changes in temporal processing, we compared extracellular responses to temporally variable pulse trains and human speech in the inferior colliculus of young adult (3 month) and aged (3 years) Mongolian gerbils. We observed a significant decrease of selectivity to the pulse trains in neuronal responses from aged animals. This decrease in selectivity led, on the population level, to an increase in signal correlations and therefore a decrease in heterogeneity of temporal receptive fields and a decreased efficiency in encoding of speech signals. A decrease in selectivity to temporal modulations is consistent with a downregulation of the inhibitory transmitter system in aged animals. These alterations in temporal processing could underlie declines in the aging auditory system, which are unrelated to peripheral hearing loss. These declines cannot be compensated by traditional hearing aids (that rely on amplification of sound) but may rather require pharmacological treatment

    Bio-inspired broad-class phonetic labelling

    Get PDF
    Recent studies have shown that the correct labeling of phonetic classes may help current Automatic Speech Recognition (ASR) when combined with classical parsing automata based on Hidden Markov Models (HMM).Through the present paper a method for Phonetic Class Labeling (PCL) based on bio-inspired speech processing is described. The methodology is based in the automatic detection of formants and formant trajectories after a careful separation of the vocal and glottal components of speech and in the operation of CF (Characteristic Frequency) neurons in the cochlear nucleus and cortical complex of the human auditory apparatus. Examples of phonetic class labeling are given and the applicability of the method to Speech Processing is discussed

    Comparing Sound-Field Speech-Auditory Brainstem Response Components between Cochlear Implant Users with Different Speech Recognition in Noise Scores

    Get PDF
    ObjectivesMany studies have suggested that Cochlear Implant (CI) users vary in terms of speech recognition in noise. Studies in this field attribute this variety partly to subcortical auditory processing. Since study on speech-Auditory Brainstem Response (speech-ABR) provides good information about speech processing, so this work was designed to compare speech-ABR components between two groups of CI users with good and poor speech recognition in noise scores.Materials & MethodsThe present study was conducted on two groups of CI users aged 8-10 years old. The first group (CI-good) consisted of 15 children prelingual CI users who had good speech recognition in noise performance. The second group (CI-poor) matched with the first group, but they had poor speech recognition in noise performance. The speech-ABR test in a sound-field presentation was performed for all the participants.  Results The speech-ABR response showed more delay in C, D, E, F, O latencies in CI-poor than CI-good users (P <0.05), meanwhile no significant difference was observed in initial wave (V(t= -0.293, p= 0.771 and A(t= -1.051, p= 0.307). Analysis in spectral-domain showed a weaker representation of fundamental frequency as well as the first formant and high-frequency component of speech stimuli in the CI-poor users.ConclusionsResults revealed that CI users who showed poor auditory performance in noise performance had deficits in encoding of periodic portion of speech signals at brainstem level. Also, this study could be as physiological evidence for poorer pitch processing in CI users with poor speech recognition in noise performance

    Auditory-inspired morphological processing of speech spectrograms: applications in automatic speech recognition and speech enhancement

    Get PDF
    New auditory-inspired speech processing methods are presented in this paper, combining spectral subtraction and two-dimensional non-linear filtering techniques originally conceived for image processing purposes. In particular, mathematical morphology operations, like erosion and dilation, are applied to noisy speech spectrograms using specifically designed structuring elements inspired in the masking properties of the human auditory system. This is effectively complemented with a pre-processing stage including the conventional spectral subtraction procedure and auditory filterbanks. These methods were tested in both speech enhancement and automatic speech recognition tasks. For the first, time-frequency anisotropic structuring elements over grey-scale spectrograms were found to provide a better perceptual quality than isotropic ones, revealing themselves as more appropriate—under a number of perceptual quality estimation measures and several signal-to-noise ratios on the Aurora database—for retaining the structure of speech while removing background noise. For the second, the combination of Spectral Subtraction and auditory-inspired Morphological Filtering was found to improve recognition rates in a noise-contaminated version of the Isolet database.This work has been partially supported by the Spanish Ministry of Science and Innovation CICYT Project No. TEC2008-06382/TEC.Publicad

    A computer model of auditory efferent suppression: Implications for the recognition of speech in noise

    Get PDF
    The neural mechanisms underlying the ability of human listeners to recognize speech in the presence of background noise are still imperfectly understood. However, there is mounting evidence that the medial olivocochlear system plays an important role, via efferents that exert a suppressive effect on the response of the basilar membrane. The current paper presents a computer modeling study that investigates the possible role of this activity on speech intelligibility in noise. A model of auditory efferent processing [ Ferry, R. T., and Meddis, R. (2007). J. Acoust. Soc. Am. 122, 3519?3526 ] is used to provide acoustic features for a statistical automatic speech recognition system, thus allowing the effects of efferent activity on speech intelligibility to be quantified. Performance of the ?basic? model (without efferent activity) on a connected digit recognition task is good when the speech is uncorrupted by noise but falls when noise is present. However, recognition performance is much improved when efferent activity is applied. Furthermore, optimal performance is obtained when the amount of efferent activity is proportional to the noise level. The results obtained are consistent with the suggestion that efferent suppression causes a ?release from adaptation? in the auditory-nerve response to noisy speech, which enhances its intelligibility

    Optimizing Speech Recognition Using a Computational Model of Human Hearing: Effect of Noise Type and Efferent Time Constants

    Get PDF
    Physiological and psychophysical methods allow for an extended investigation of ascending (afferent) neural pathways from the ear to the brain in mammals, and their role in enhancing signals in noise. However, there is increased interest in descending (efferent) neural fibers in the mammalian auditory pathway. This efferent pathway operates via the olivocochlear system, modifying auditory processing by cochlear innervation and enhancing human ability to detect sounds in noisy backgrounds. Effective speech intelligibility may depend on a complex interaction between efferent time-constants and types of background noise. In this study, an auditory model with efferent-inspired processing provided the front-end to an automatic-speech-recognition system (ASR), used as a tool to evaluate speech recognition with changes in time-constants (50 to 2000 ms) and background noise type (unmodulated and modulated noise). With efferent activation, maximal speech recognition improvement (for both noise types) occurred for signal-to-noise ratios around 10 dB, characteristic of real-world speech-listening situations. Net speech improvement due to efferent activation (NSIEA) was smaller in modulated noise than in unmodulated noise. For unmodulated noise, NSIEA increased with increasing time-constant. For modulated noise, NSIEA increased for time-constants up to 200 ms but remained similar for longer time-constants, consistent with speech-envelope modulation times important to speech recognition in modulated noise. The model improves our understanding of the complex interactions involved in speech recognition in noise, and could be used to simulate the difficulties of speech perception in noise as a consequence of different types of hearing loss
    • 

    corecore