93 research outputs found

    RL-34 ring laser gyro laboratory evaluation for the Deep Space Network antenna application

    Get PDF
    The overall results of this laboratory evaluation are quite encouraging. The gyro data is in good agreement with the system's overall pointing performance, which is quite close to the technical objectives for the Deep Space Network (DSN) application. The system can be calibrated to the levels required for millidegree levels of pointing performance, and initialization performance is within the required 0.001 degree objective. The blind target acquisition performance is within a factor of two of the 0.0001 degree objective, limited only by a combination of the slow rate (0.5 deg/sec) and the existing production quantization logic (0.38 arc-sec/pulse). Logic circuitry exists to better this performance such that it will better the objective by 50 percent. Representative data with this circuitry has been provided for illustration. Target tracking performance is about twice the one millidegree objective, with several factors contributing. The first factor is the bias stability of the gyros, which is exceptional, but will limit performance to the 0.001 and 0.002 degree range for long tracking periods. The second contributing factor is the accelerometer contributions when the system is elevated. These degrade performance into the 0.003 to 0.004 degree range, which could be improved upon with some additional changes. Finally, we have provided a set of recommendations to improve performance closer to the technical objectives. These recommendations include gyro, electronics, and system configurational changes that form the basis for additional work to achieve the desired performance. In conclusion, we believe that the RL-34 ring laser gyro-based advanced navigation system demonstrated performance consistent with expectations and technical objectives, and it has the potential for even further enhancement for the DSN application

    Design Optimization of a Quad-Rotor Capable of Autonomous Flight

    Get PDF
    An autonomous quad-rotor is an aerial helicopter with four horizontal rotors designed in a square configuration capable of locating lost or jeopardized victims, gathering military intelligence, or surveillance. The project team designed a miniaturized quad-rotor able to determine its own attitude through an onboard sensor system. A computer program using formulated control equations and an onboard processing system enables the quad-rotor to fly to a pre-determined position while correcting its attitude, which results in steady level autonomous flight

    Preliminary design of a redundant strapped down inertial navigation unit using two-degree-of-freedom tuned-gimbal gyroscopes

    Get PDF
    This redundant strapdown INS preliminary design study demonstrates the practicality of a skewed sensor system configuration by means of: (1) devising a practical system mechanization utilizing proven strapdown instruments, (2) thoroughly analyzing the skewed sensor redundancy management concept to determine optimum geometry, data processing requirements, and realistic reliability estimates, and (3) implementing the redundant computers into a low-cost, maintainable configuration

    Feedback Control of a Hovercraft over a Wireless Link

    Get PDF
    Nonlinear underactuated systems (i.e. systems with fewer control inputs than configuration variables) present significant challenges for automatic control. This thesis explores feedback control of an underactuated hovercraft over a wireless communication channel using techniques from nonlinear control theory. A family of control laws stabilizing the hovercraft <em>reduced dynamics</em> - including zero velocity, constant forward/reverse velocity, and constant angular velocity stabilization - are derived. Lyapunov arguments are used to prove convergence of the reduced dynamics under the control laws. It is shown that heading cannot be stabilized by a continuously differentiable state feedback law. In response, two hybrid control algorithms for heading stabilization are proposed. The control laws are demonstrated on a real R/C hovercraft using a distributed autopilot and a Bluetooth network. A two-dimensional aided INS is developed using a MEMs IMU and the "Cricket" RF/ultrasonic ranging system. Experimental and simulated results from a high-fidelity model are shown to agree nicely

    Study to investigate and evaluate means of optimizing the radar function for the space shuttle

    Get PDF
    Results are discussed of a study to define a radar and antenna system which best suits the space shuttle rendezvous requirements. Topics considered include antenna characteristics and antenna size tradeoffs, fundamental sources of measurement errors inherent in the target itself, backscattering crosssection models of the target and three basic candidate radar types. Antennas up to 1.5 meters in diameter are within specified installation constraints, however, a 1 meter diameter paraboloid and a folding, four slot backfeed on a two gimbal mount implemented for a spiral acquisition scan is recommended. The candidate radar types discussed are: (1) noncoherent pulse radar (2) coherent pulse radar and (3) pulse Doppler radar with linear FM ranging. The radar type recommended is a pulse Doppler with linear FM ranging. Block diagrams of each radar system are shown

    Flight controller synthesis via deep reinforcement learning

    Get PDF
    Traditional control methods are inadequate in many deployment settings involving autonomous control of Cyber-Physical Systems (CPS). In such settings, CPS controllers must operate and respond to unpredictable interactions, conditions, or failure modes. Dealing with such unpredictability requires the use of executive and cognitive control functions that allow for planning and reasoning. Motivated by the sport of drone racing, this dissertation addresses these concerns for state-of-the-art flight control by investigating the use of deep artificial neural networks to bring essential elements of higher-level cognition to bear on the design, implementation, deployment, and evaluation of low level (attitude) flight controllers. First, this thesis presents a feasibility analyses and results which confirm that neural networks, trained via reinforcement learning, are more accurate than traditional control methods used by commercial uncrewed aerial vehicles (UAVs) for attitude control. Second, armed with these results, this thesis reports on the development and release of an open source, full solution stack for building neuro-flight controllers. This stack consists of a tuning framework for implementing training environments (GymFC) and firmware for the world’s first neural network supported flight controller (Neuroflight). GymFC’s novel approach fuses together the digital twinning paradigm with flight control training to provide seamless transfer to hardware. Third, to transfer models synthesized by GymFC to hardware, this thesis reports on the toolchain that has been released for compiling neural networks into Neuroflight, which can be flashed to off-the-shelf microcontrollers. This toolchain includes detailed procedures for constructing a multicopter digital twin to allow the research and development community to synthesize flight controllers unique to their own aircraft. Finally, this thesis examines alternative reward system functions as well as changes to the software environment to bridge the gap between simulation and real world deployment environments. The design, evaluation, and experimental work summarized in this thesis demonstrates that deep reinforcement learning is able to be leveraged for the design and implementation of neural network controllers capable not only of maintaining stable flight, but also precision aerobatic maneuvers in real world settings. As such, this work provides a foundation for developing the next generation of flight control systems

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Development and Validation of an IMU/GPS/Galileo Integration Navigation System for UAV

    Get PDF
    Several and distinct Unmanned Aircraft Vehicle (UAV) applications are emerging, demanding steps to be taken in order to allow those platforms to operate in an un-segregated airspace. The key risk component, hindering the widespread integration of UAV in an un-segregated airspace, is the autonomous component: the need for a high level of autonomy in the UAV that guarantees a safe and secure integration in an un-segregated airspace. At this point, the UAV accurate state estimation plays a fundamental role for autonomous UAV, being one of the main responsibilities of the onboard autopilot. Given the 21st century global economic paradigm, academic projects based on inexpensive UAV platforms but on expensive commercial autopilots start to become a non-economic solution. Consequently, there is a pressing need to overcome this problem through, on one hand, the development of navigation systems using the high availability of low cost, low power consumption, and small size navigation sensors offered in the market, and, on the other hand, using Global Navigation Satellite Systems Software Receivers (GNSS SR). Since the performance that is required for several applications in order to allow UAV to fly in an un-segregated airspace is not yet defined, for most UAV academic applications, the navigation system accuracy required should be at least the same as the one provided by the available commercial autopilots. This research focuses on the investigation of the performance of an integrated navigation system composed by a low performance inertial measurement unit (IMU) and a GNSS SR. A strapdown mechanization algorithm, to transform raw inertial data into navigation solution, was developed, implemented and evaluated. To fuse the data provided by the strapdown algorithm with the one provided by the GNSS SR, an Extended Kalman Filter (EKF) was implemented in loose coupled closed-loop architecture, and then evaluated. Moreover, in order to improve the performance of the IMU raw data, the Allan variance and denoise techniques were considered for both studying the IMU error model and improving inertial sensors raw measurements. In order to carry out the study, a starting question was made and then, based on it, eight questions were derived. These eight secondary questions led to five hypotheses, which have been successfully tested along the thesis. This research provides a deliverable to the Project of Research and Technologies on Unmanned Air Vehicles (PITVANT) Group, consisting of a well-documented UAV Development and Validation of an IMU/GPS/Galileo Integration Navigation System for UAV II navigation algorithm, an implemented and evaluated navigation algorithm in the MatLab environment, and Allan variance and denoising algorithms to improve inertial raw data, enabling its full implementation in the existent Portuguese Air Force Academy (PAFA) UAV. The derivable provided by this thesis is the answer to the main research question, in such a way that it implements a step by step procedure on how the Strapdown IMU (SIMU)/GNSS SR should be developed and implemented in order to replace the commercial autopilot. The developed integrated SIMU/GNSS SR solution evaluated, in post-processing mode, through van-test scenario, using real data signals, at the Galileo Test and Development Environment (GATE) test area in Berchtesgaden, Germany, when confronted with the solution provided by the commercial autopilot, proved to be of better quality. Although no centimetre-level of accuracy was obtained for the position and velocity, the results confirm that the integration strategy outperforms the Piccolo system performance, being this the ultimate goal of this research work

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones
    • …
    corecore