282 research outputs found

    Benchmarking SciDB Data Import on HPC Systems

    Full text link
    SciDB is a scalable, computational database management system that uses an array model for data storage. The array data model of SciDB makes it ideally suited for storing and managing large amounts of imaging data. SciDB is designed to support advanced analytics in database, thus reducing the need for extracting data for analysis. It is designed to be massively parallel and can run on commodity hardware in a high performance computing (HPC) environment. In this paper, we present the performance of SciDB using simulated image data. The Dynamic Distributed Dimensional Data Model (D4M) software is used to implement the benchmark on a cluster running the MIT SuperCloud software stack. A peak performance of 2.2M database inserts per second was achieved on a single node of this system. We also show that SciDB and the D4M toolbox provide more efficient ways to access random sub-volumes of massive datasets compared to the traditional approaches of reading volumetric data from individual files. This work describes the D4M and SciDB tools we developed and presents the initial performance results. This performance was achieved by using parallel inserts, a in-database merging of arrays as well as supercomputing techniques, such as distributed arrays and single-program-multiple-data programming.Comment: 5 pages, 4 figures, IEEE High Performance Extreme Computing (HPEC) 2016, best paper finalis

    Formal Representation of the SS-DB Benchmark and Experimental Evaluation in EXTASCID

    Full text link
    Evaluating the performance of scientific data processing systems is a difficult task considering the plethora of application-specific solutions available in this landscape and the lack of a generally-accepted benchmark. The dual structure of scientific data coupled with the complex nature of processing complicate the evaluation procedure further. SS-DB is the first attempt to define a general benchmark for complex scientific processing over raw and derived data. It fails to draw sufficient attention though because of the ambiguous plain language specification and the extraordinary SciDB results. In this paper, we remedy the shortcomings of the original SS-DB specification by providing a formal representation in terms of ArrayQL algebra operators and ArrayQL/SciQL constructs. These are the first formal representations of the SS-DB benchmark. Starting from the formal representation, we give a reference implementation and present benchmark results in EXTASCID, a novel system for scientific data processing. EXTASCID is complete in providing native support both for array and relational data and extensible in executing any user code inside the system by the means of a configurable metaoperator. These features result in an order of magnitude improvement over SciDB at data loading, extracting derived data, and operations over derived data.Comment: 32 pages, 3 figure

    D4M 3.0: Extended Database and Language Capabilities

    Full text link
    The D4M tool was developed to address many of today's data needs. This tool is used by hundreds of researchers to perform complex analytics on unstructured data. Over the past few years, the D4M toolbox has evolved to support connectivity with a variety of new database engines, including SciDB. D4M-Graphulo provides the ability to do graph analytics in the Apache Accumulo database. Finally, an implementation using the Julia programming language is also now available. In this article, we describe some of our latest additions to the D4M toolbox and our upcoming D4M 3.0 release. We show through benchmarking and scaling results that we can achieve fast SciDB ingest using the D4M-SciDB connector, that using Graphulo can enable graph algorithms on scales that can be memory limited, and that the Julia implementation of D4M achieves comparable performance or exceeds that of the existing MATLAB(R) implementation.Comment: IEEE HPEC 201

    Enabling On-Demand Database Computing with MIT SuperCloud Database Management System

    Full text link
    The MIT SuperCloud database management system allows for rapid creation and flexible execution of a variety of the latest scientific databases, including Apache Accumulo and SciDB. It is designed to permit these databases to run on a High Performance Computing Cluster (HPCC) platform as seamlessly as any other HPCC job. It ensures the seamless migration of the databases to the resources assigned by the HPCC scheduler and centralized storage of the database files when not running. It also permits snapshotting of databases to allow researchers to experiment and push the limits of the technology without concerns for data or productivity loss if the database becomes unstable.Comment: 6 pages; accepted to IEEE High Performance Extreme Computing (HPEC) conference 2015. arXiv admin note: text overlap with arXiv:1406.492

    Scalable analysis of multitemporal images using an array database

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesMassive archives of earth observation data are now available and the size of this data is increasing at a tremendous rate. This data is a very important resource and has a variety of applications including monitoring change, forestry application, agricultural application and urban planning. At the same time, they also possess challenge of storage, management, and high computational needs. In this study SciDB, an array-based database is used to store, manage and process multitemporal satellite imagery. The major aim of this study is to investigate the performance of SciDB based scalable solution to run arithmetic operation, simple time series analysis and complex time series analysis on multitemporal satellite imagery. This study provides better insight of SciDB architecture and provides suggestions for better performance in SciDB for remote sensing jobs. The research also compared the performance of time series analysis on SciDB array with file-based analysis using multicore parallelization (Using „Parallel‟ Package of R). It is found that SciDB provides a faster solution for time series analysis. However, SciDB might not be the best solution if the data size is smaller. Also, relative immaturity of SciDB and limited inherent support of remote sensing operations increases effort for the scientist to develop SciDB based solution. Nevertheless, SciDB has the potential to meet the ever increasing storage, management and computational need of big remote sensing data

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page
    • …
    corecore