223,424 research outputs found

    Arm Mbed – AWS IoT System Integration [Open access]

    Get PDF
    This project explores the different Internet of Things (IoT) architectures and the available platforms to define a general IoT Architecture to connect Arm microcontrollers to Amazon Web Services. In order to accommodate the wide range of IoT applications, the architecture was defined with different routes that an Arm microcontroller can take to reach AWS. Once this Architecture was defined, a performance analysis on the different routes was performed in terms of communication speed and bandwidth. Finally, a Smart Home use case scenario is implemented to show the basic functionalities of an IoT system such as sending data to the device and data storage in the Cloud. Furthermore, a Cloud ML algorithm is triggered in real time by the Smart Home to receive a prediction of the current Comfort Level in the room

    A lightweight blockchain based framework for underwater ioT

    Get PDF
    The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including underwater monitoring, where sensors are located at various depths, and data must be transmitted to surface base stations for storage and processing. Ensuring that data transmitted across hierarchical sensor networks are kept secure and private without high computational cost remains a challenge. In this paper, we propose a multilevel sensor monitoring architecture. Our proposal includes a layer-based architecture consisting of Fog and Cloud elements to process and store and process the Internet of Underwater Things (IoUT) data securely with customized Blockchain technology. The secure routing of IoUT data through the hierarchical topology ensures the legitimacy of data sources. A security and performance analysis was performed to show that the architecture can collect data from IoUT devices in the monitoring region efficiently and securely. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use

    Connecting the World of Embedded Mobiles: The RIOT Approach to Ubiquitous Networking for the Internet of Things

    Full text link
    The Internet of Things (IoT) is rapidly evolving based on low-power compliant protocol standards that extend the Internet into the embedded world. Pioneering implementations have proven it is feasible to inter-network very constrained devices, but had to rely on peculiar cross-layered designs and offer a minimalistic set of features. In the long run, however, professional use and massive deployment of IoT devices require full-featured, cleanly composed, and flexible network stacks. This paper introduces the networking architecture that turns RIOT into a powerful IoT system, to enable low-power wireless scenarios. RIOT networking offers (i) a modular architecture with generic interfaces for plugging in drivers, protocols, or entire stacks, (ii) support for multiple heterogeneous interfaces and stacks that can concurrently operate, and (iii) GNRC, its cleanly layered, recursively composed default network stack. We contribute an in-depth analysis of the communication performance and resource efficiency of RIOT, both on a micro-benchmarking level as well as by comparing IoT communication across different platforms. Our findings show that, though it is based on significantly different design trade-offs, the networking subsystem of RIOT achieves a performance equivalent to that of Contiki and TinyOS, the two operating systems which pioneered IoT software platforms

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network
    corecore