3,411 research outputs found

    On the Capacity of the Wiener Phase-Noise Channel: Bounds and Capacity Achieving Distributions

    Full text link
    In this paper, the capacity of the additive white Gaussian noise (AWGN) channel, affected by time-varying Wiener phase noise is investigated. Tight upper and lower bounds on the capacity of this channel are developed. The upper bound is obtained by using the duality approach, and considering a specific distribution over the output of the channel. In order to lower-bound the capacity, first a family of capacity-achieving input distributions is found by solving a functional optimization of the channel mutual information. Then, lower bounds on the capacity are obtained by drawing samples from the proposed distributions through Monte-Carlo simulations. The proposed capacity-achieving input distributions are circularly symmetric, non-Gaussian, and the input amplitudes are correlated over time. The evaluated capacity bounds are tight for a wide range of signal-to-noise-ratio (SNR) values, and thus they can be used to quantify the capacity. Specifically, the bounds follow the well-known AWGN capacity curve at low SNR, while at high SNR, they coincide with the high-SNR capacity result available in the literature for the phase-noise channel.Comment: IEEE Transactions on Communications, 201

    Energy-Efficient Communication over the Unsynchronized Gaussian Diamond Network

    Full text link
    Communication networks are often designed and analyzed assuming tight synchronization among nodes. However, in applications that require communication in the energy-efficient regime of low signal-to-noise ratios, establishing tight synchronization among nodes in the network can result in a significant energy overhead. Motivated by a recent result showing that near-optimal energy efficiency can be achieved over the AWGN channel without requiring tight synchronization, we consider the question of whether the potential gains of cooperative communication can be achieved in the absence of synchronization. We focus on the symmetric Gaussian diamond network and establish that cooperative-communication gains are indeed feasible even with unsynchronized nodes. More precisely, we show that the capacity per unit energy of the unsynchronized symmetric Gaussian diamond network is within a constant factor of the capacity per unit energy of the corresponding synchronized network. To this end, we propose a distributed relaying scheme that does not require tight synchronization but nevertheless achieves most of the energy gains of coherent combining.Comment: 20 pages, 4 figures, submitted to IEEE Transactions on Information Theory, presented at IEEE ISIT 201

    The Balanced Unicast and Multicast Capacity Regions of Large Wireless Networks

    Full text link
    We consider the question of determining the scaling of the n2n^2-dimensional balanced unicast and the n2nn 2^n-dimensional balanced multicast capacity regions of a wireless network with nn nodes placed uniformly at random in a square region of area nn and communicating over Gaussian fading channels. We identify this scaling of both the balanced unicast and multicast capacity regions in terms of Θ(n)\Theta(n), out of 2n2^n total possible, cuts. These cuts only depend on the geometry of the locations of the source nodes and their destination nodes and the traffic demands between them, and thus can be readily evaluated. Our results are constructive and provide optimal (in the scaling sense) communication schemes.Comment: 37 pages, 7 figures, to appear in IEEE Transactions on Information Theor

    Replacing the Soft FEC Limit Paradigm in the Design of Optical Communication Systems

    Get PDF
    The FEC limit paradigm is the prevalent practice for designing optical communication systems to attain a certain bit-error rate (BER) without forward error correction (FEC). This practice assumes that there is an FEC code that will reduce the BER after decoding to the desired level. In this paper, we challenge this practice and show that the concept of a channel-independent FEC limit is invalid for soft-decision bit-wise decoding. It is shown that for low code rates and high order modulation formats, the use of the soft FEC limit paradigm can underestimate the spectral efficiencies by up to 20%. A better predictor for the BER after decoding is the generalized mutual information, which is shown to give consistent post-FEC BER predictions across different channel conditions and modulation formats. Extensive optical full-field simulations and experiments are carried out in both the linear and nonlinear transmission regimes to confirm the theoretical analysis
    • …
    corecore