886 research outputs found

    Detection of REM Sleep Behaviour Disorder by Automated Polysomnography Analysis

    Full text link
    Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson's disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification. Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls. Sleep stage classification was achieved using a Random Forest (RF) classifier and 156 features extracted from electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) channels. For RBD detection, a RF classifier was trained combining established techniques to quantify muscle atonia with additional features that incorporate sleep architecture and the EMG fractal exponent. Automated multi-state sleep staging achieved a 0.62 Cohen's Kappa score. RBD detection accuracy improved by 10% to 96% (compared to individual established metrics) when using manually annotated sleep staging. Accuracy remained high (92%) when using automated sleep staging. This study outperforms established metrics and demonstrates that incorporating sleep architecture and sleep stage transitions can benefit RBD detection. This study also achieved automated sleep staging with a level of accuracy comparable to manual annotation. This study validates a tractable, fully-automated, and sensitive pipeline for RBD identification that could be translated to wearable take-home technology.Comment: 20 pages, 3 figure

    A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Get PDF
    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results

    Imitation, mirror neurons and autism

    Get PDF
    Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show activity in relation both to specific actions performed by self and matching actions performed by others, providing a potential bridge between minds. MN systems exist in primates without imitative and ‘theory of mind’ abilities and we suggest that in order for them to have become utilized to perform social cognitive functions, sophisticated cortical neuronal systems have evolved in which MNs function as key elements. Early developmental failures of MN systems are likely to result in a consequent cascade of developmental impairments characterised by the clinical syndrome of autism

    An Autonomous Wearable System for Predicting and Detecting Localised Muscle Fatigue

    Get PDF
    Muscle fatigue is an established area of research and various types of muscle fatigue have been clinically investigated in order to fully understand the condition. This paper demonstrates a non-invasive technique used to automate the fatigue detection and prediction process. The system utilises the clinical aspects such as kinematics and surface electromyography (sEMG) of an athlete during isometric contractions. Various signal analysis methods are used illustrating their applicability in real-time settings. This demonstrated system can be used in sports scenarios to promote muscle growth/performance or prevent injury. To date, research on localised muscle fatigue focuses on the clinical side and lacks the implementation for detecting/predicting localised muscle fatigue using an autonomous system. Results show that automating the process of localised muscle fatigue detection/prediction is promising. The autonomous fatigue system was tested on five individuals showing 90.37% accuracy on average of correct classification and an error of 4.35% in predicting the time to when fatigue will onset

    Hand (Motor) Movement Imagery Classification of EEG Using Takagi-Sugeno-Kang Fuzzy-Inference Neural Network

    Get PDF
    Approximately 20 million people in the United States suffer from irreversible nerve damage and would benefit from a neuroprosthetic device modulated by a Brain-Computer Interface (BCI). These devices restore independence by replacing peripheral nervous system functions such as peripheral control. Although there are currently devices under investigation, contemporary methods fail to offer adaptability and proper signal recognition for output devices. Human anatomical differences prevent the use of a fixed model system from providing consistent classification performance among various subjects. Furthermore, notoriously noisy signals such as Electroencephalography (EEG) require complex measures for signal detection. Therefore, there remains a tremendous need to explore and improve new algorithms. This report investigates a signal-processing model that is better suited for BCI applications because it incorporates machine learning and fuzzy logic. Whereas traditional machine learning techniques utilize precise functions to map the input into the feature space, fuzzy-neuro system apply imprecise membership functions to account for uncertainty and can be updated via supervised learning. Thus, this method is better equipped to tolerate uncertainty and improve performance over time. Moreover, a variation of this algorithm used in this study has a higher convergence speed. The proposed two-stage signal-processing model consists of feature extraction and feature translation, with an emphasis on the latter. The feature extraction phase includes Blind Source Separation (BSS) and the Discrete Wavelet Transform (DWT), and the feature translation stage includes the Takagi-Sugeno-Kang Fuzzy-Neural Network (TSKFNN). Performance of the proposed model corresponds to an average classification accuracy of 79.4 % for 40 subjects, which is higher than the standard literature values, 75%, making this a superior model

    Prediction of larynx function using multichannel surface EMG classification

    Get PDF
    Total laryngectomy (TL) affects critical functions such as swallowing, coughing and speaking. An artificial, bioengineered larynx (ABL), operated via myoelectric signals, may improve quality of life for TL patients. To evaluate the efficacy of using surface electromyography (sEMG) as a control signal to predict instances of swallowing, coughing and speaking, sEMG was recorded from submental, intercostal and diaphragm muscles. The cohort included TL and control participants. Swallowing, coughing, speaking and movement actions were recorded, and a range of classifiers were investigated for prediction of these actions. Our algorithm achieved F1-scores of 76.0 ± 4.4 % (swallows), 93.8 ± 2.8 % (coughs) and 70.5 ± 5.4 % (speech) for controls, and 67.7 ± 4.4 % (swallows), 71.0 ± 9.1 % (coughs) and 78.0 ± 3.8 % (speech) for TLs, using a random forest (RF) classifier. 75.1 ± 6.9 % of swallows were detected within 500 ms of onset in the controls, and 63.1 ± 6.1 % in TLs. sEMG can be used to predict critical larynx movements, although a viable ABL requires improvements. Results are particularly encouraging as they encompass a TL cohort. An ABL could alleviate many challenges faced by laryngectomees. This study represents a promising step toward realising such a device

    Electromyographic Activity in the EEG in Alzheimer's Disease: Noise or Signal?

    Get PDF
    Many efforts have been directed at negating the influence of electromyographic (EMG) activity on the EEG, especially in elderly demented patients. We wondered whether these “artifacts” might reflect cognitive and behavioural aspects of dementia. In this pilot study, 11 patients with probable Alzheimer's disease (AD), 13 with amnestic mild cognitive impairment (MCI) and 13 controls underwent EEG registration. As EMG measures, we used frontal and temporal 50–70 Hz activity. We found that the EEGs of AD patients displayed more theta activity, less alpha reactivity, and more frontal EMG than controls. Interestingly, increased EMG activity indicated more cognitive impairment and more depressive complaints. EEG variables on the whole distinguished better between groups than EMG variables, but an EMG variable was best for the distinction between MCI and controls. Our results suggest that EMG activity in the EEG could be more than noise; it differs systematically between groups and may reflect different cerebral functions than the EEG

    Changing your mind before it is too late: the electrophysiological correlates of online error correction during response selection

    Get PDF
    Inhibiting actions when they are no longer appropriate is essential for adaptive goal-directed behavior. In this study, we used high-density EEG and a standard flanker task to explore the spatiotemporal dynamics of cognitive control and inhibitory mechanisms aimed to prevent the commission of errors. By recording hand-related electromyographic activity, we could disentangle successful from unsuccessful inhibition attempts. Our results confirm that (a) the latency of the error-related negativity (ERN; or Ne) component is too late to be associated with these online inhibitory mechanisms, and (b) instead, a frontal slow negative component with an earlier time course was associated with the implementation of online inhibition. These findings are consistent with single-cell recordings in monkeys showing that the supplementary motor area provides cognitive control signals to the primary motor cortex to exert online inhibition and in turn rectify the course of erroneous actions
    corecore