5,965 research outputs found

    Single-breath-hold photoacoustic computed tomography of the breast

    Get PDF
    We have developed a single-breath-hold photoacoustic computed tomography (SBH-PACT) system to reveal detailed angiographic structures in human breasts. SBH-PACT features a deep penetration depth (4 cm in vivo) with high spatial and temporal resolutions (255 µm in-plane resolution and a 10 Hz 2D frame rate). By scanning the entire breast within a single breath hold (~15 s), a volumetric image can be acquired and subsequently reconstructed utilizing 3D back-projection with negligible breathing-induced motion artifacts. SBH-PACT clearly reveals tumors by observing higher blood vessel densities associated with tumors at high spatial resolution, showing early promise for high sensitivity in radiographically dense breasts. In addition to blood vessel imaging, the high imaging speed enables dynamic studies, such as photoacoustic elastography, which identifies tumors by showing less compliance. We imaged breast cancer patients with breast sizes ranging from B cup to DD cup, and skin pigmentations ranging from light to dark. SBH-PACT identified all the tumors without resorting to ionizing radiation or exogenous contrast, posing no health risks

    Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast

    Get PDF
    Ultrasound Tomography has seen a revival of interest in the past decade, especially for breast imaging, due to improvements in both ultrasound and computing hardware. In particular, three-dimensional ultrasound tomography, a fully tomographic method in which the medium to be imaged is surrounded by ultrasound transducers, has become feasible. In this paper, a comprehensive derivation and study of a robust framework for large-scale bent-ray ultrasound tomography in 3D for a hemispherical detector array is presented. Two ray-tracing approaches are derived and compared. More significantly, the problem of linking the rays between emitters and receivers, which is challenging in 3D due to the high number of degrees of freedom for the trajectory of rays, is analysed both as a minimisation and as a root-finding problem. The ray-linking problem is parameterised for a convex detection surface and three robust, accurate, and efficient ray-linking algorithms are formulated and demonstrated. To stabilise these methods, novel adaptive-smoothing approaches are proposed that control the conditioning of the update matrices to ensure accurate linking. The nonlinear UST problem of estimating the sound speed was recast as a series of linearised subproblems, each solved using the above algorithms and within a steepest descent scheme. The whole imaging algorithm was demonstrated to be robust and accurate on realistic data simulated using a full-wave acoustic model and an anatomical breast phantom, and incorporating the errors due to time-of-flight picking that would be present with measured data. This method can used to provide a low-artefact, quantitatively accurate, 3D sound speed maps. In addition to being useful in their own right, such 3D sound speed maps can be used to initialise full-wave inversion methods, or as an input to photoacoustic tomography reconstructions

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation

    Get PDF
    Photoacoustic computed tomography with compressed sensing (CS-PACT) is a commonly used imaging strategy for sparse-sampling PACT. However, it is very time-consuming because of the iterative process involved in the image reconstruction. In this paper, we present a graphics processing unit (GPU)-based parallel computation framework for total-variation-based CS-PACT and adapted into a custom-made PACT system. Specifically, five compute-intensive operators are extracted from the iteration algorithm and are redesigned for parallel performance on a GPU. We achieved an image reconstruction speed 24–31 times faster than the CPU performance. We performed in vivo experiments on human hands to verify the feasibility of our developed method

    A 4D Ultrasound Tomography for Industrial Process Reactors Investigation

    Get PDF

    Towards ultrasound full-waveform inversion in medical imaging

    Get PDF
    Ultrasound imaging is a front-line clinical modality with a wide range of applications. However, there are limitations to conventional methods for some medical imaging problems, including the imaging of the intact brain. The goal of this thesis is to explore and build on recent technological advances in ultrasonics and related areas such as geophysics, including the ultrasound data parallel acquisition hardware, advanced computational techniques for field modelling and for inverse problem solving. With the significant increase in the computational power now available, a particular focus will be put on exploring the potential of full-waveform inversion (FWI), a high-resolution image reconstruction technique which has shown significant success in seismic exploration, for medical imaging applications. In this thesis a range of technologies and systems have been developed in order to improve ultrasound imaging by taking advantage of these recent advances. In the first part of this thesis the application of dual frequency ultrasound for contrast enhanced imaging of neurovasculature in the mouse brain is investigated. Here we demonstrated a significant improvement in the contrast-to-tissue ratio that could be achieved by using a multi-probe, dual frequency imaging system when compared to a conventional approach using a single high frequency probe. However, without a sufficiently accurate calibration method to determine the positioning of these probes the image resolution was found to be significantly reduced. To mitigate the impact of these positioning errors, a second study was carried out to develop a sophisticated dual probe ultrasound tomography acquisition system with a robust methodology for the calibration of transducer positions. This led to a greater focus on the development of ultrasound tomography applications in medical imaging using FWI. A 2.5D brain phantom was designed that consisted of a soft tissue brain model surrounded by a hard skull mimicking material to simulate a transcranial imaging problem. This was used to demonstrate for the first time, as far as we are aware, the experimental feasibility of imaging the brain through skull using FWI. Furthermore, to address the lack of broadband sensors available for medical FWI reconstruction applications, a deep learning neural network was proposed for the bandwidth extension of observed narrowband data. A demonstration of this proposed technique was then carried out by improving the FWI image reconstruction of experimentally acquired breast phantom imaging data. Finally, the FWI imaging method was expanded for3D neuroimaging applications and an in silico feasibility of reconstructing the mouse brain with commercial transducers is demonstrated.Open Acces

    CALIBRATION OF AN ULTRASONIC TRANSMISSIVE COMPUTED TOMOGRAPHY SYSTEM

    Get PDF
    Tato dizertace je zaměřena na medicínskou zobrazovací modalitu – ultrazvukovou počítačovou tomografii – a algoritmy zlepšující kvalitu zobrazení, zejména kalibraci USCT přístroje. USCT je novou modalitou kombinující ultrazvukový přenos signálů a principy tomografické rekonstrukce obrazů vyvíjených pro jiné tomografické systémy. V principu lze vytvořit kvantitativní 3D obrazové objemy s vysokým rozlišením a kontrastem. USCT je primárně určeno pro diagnózu rakoviny prsu. Autor spolupracoval na projektu Institutu Zpracování dat a Elektroniky, Forschungszentrum Karlsruhe, kde je USCT systém vyvíjen. Jeden ze zásadních problémů prototypu USCT v Karlsruhe byla absence kalibrace. Tisíce ultrazvukových měničů se liší v citlivosti, směrovosti a frekvenční odezvě. Tyto parametry jsou navíc proměnné v čase. Další a mnohem závažnější problém byl v pozičních odchylkách jednotlivých měničů. Všechny tyto aspekty mají vliv na konečnou kvalitu rekonstruovaných obrazů. Problém kalibrace si autor zvolil jako hlavní téma dizertace. Tato dizertace popisuje nové metody v oblastech rekonstrukce útlumových obrazů, kalibrace citlivosti měničů a zejména geometrická kalibrace pozic měničů. Tyto metody byly implementovány a otestovány na reálných datech pocházejících z prototypu USCT z Karlsruhe.This dissertation is centered on a medical imaging modality – the ultrasonic computed tomography (USCT) – and algorithms which improve the resulting image quality, namely the calibration of a USCT device. The USCT is a novel imaging modality which combines the phenomenon of ultrasound and image reconstruction principles developed for other tomographic systems. It is capable of producing quantitative 3D image volumes with high resolution and tissue contrast and is primarily aimed at breast cancer diagnosis. The author was involved in a joint research project at the Institute of Data Processing and Electronics, Forschungszentrum Karlsruhe (German National Research Center), where a USCT system is being developed. One of the main problems in the Karlsruhe USCT prototype was the absence of any calibration. The thousands of transducers used in the system have deviations in sensitivity, directivity, and frequency response. These parameters change over time as the transducers age. Also the mechanical positioning of the transducer elements is not precise. All these aspects greatly affect the overall quality of the reconstructed images. The problem of calibration of a USCT system was chosen as the main topic for this dissertation. The dissertation thesis presents novel methods in the area of reconstruction of attenuation images, sensitivity calibration, and mainly geometrical calibration. The methods were implemented and tested on real data generated by the Karlsruhe USCT device.
    corecore