680 research outputs found

    Bifurcation Routes to Volatility Clustering under Evolutionary Learning

    Get PDF
    A simple asset pricing model with two types of adaptively learning traders, fundamentalists and technical analysts, is studied. Fractions of these trader types, which are both boundedly rational, change over time according to evolutionary learning, with technical analysts conditioning their forecasting rule upon deviations from a benchmark fundamental. Volatility clustering arises endogenously in this model. Two mechanisms are proposed as an explanation. The first is coexistence of a stable steady state and a stable limit cycle, which arise as a consequence of a so-called Chenciner bifurcation of the system. The second is intermittency and associated bifurcation routes to strange attractors. Both phenomena are persistent and occur generically. Simple economic intuition why these phenomena arise in nonlinear multi-agent evolutionary systems is provided.

    Dragon-kings: mechanisms, statistical methods and empirical evidence

    Full text link
    This introductory article presents the special Discussion and Debate volume "From black swans to dragon-kings, is there life beyond power laws?" published in Eur. Phys. J. Special Topics in May 2012. We summarize and put in perspective the contributions into three main themes: (i) mechanisms for dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii) empirical evidence in a large variety of natural and social systems. Overall, we are pleased to witness significant advances both in the introduction and clarification of underlying mechanisms and in the development of novel efficient tests that demonstrate clear evidence for the presence of dragon-kings in many systems. However, this positive view should be balanced by the fact that this remains a very delicate and difficult field, if only due to the scarcity of data as well as the extraordinary important implications with respect to hazard assessment, risk control and predictability.Comment: 20 page

    A nonlinear structural model for volatility clustering

    Get PDF
    A simple nonlinear structural model of endogenous belief heterogeneity is proposed. News about fundamentals is an IID random process, but nevertheless volatility clustering occurs as an endogenous phenomenon caused by the interaction between different types of traders, fundamentalists and technical analysts. The belief types are driven by adaptive, evolutionary dynamics according to the success of the prediction strategies as measured by accumulated realized profits, conditioned upon price deviations from the rational expectations fundamental price. Asset prices switch irregularly between two different regimes --periods of small price fluctuations and periods of large price changes triggered by random news and reinforced by technical trading -- thus, creating time varying volatility similar to that observed in real financial data.

    Microscopic models of financial markets

    Get PDF
    This review deals with several microscopic models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo-Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-Levy-Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors' interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power-law with index around three), it became clear that financial markets dynamics give rise to some kind of universal scaling laws. Showing similarities with scaling laws for other systems with many interacting subunits, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic was pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavors of multi-agent models that have appeared by now, we discuss the Cont-Bouchaud, Solomon-Levy-Huang and Lux-Marchesi models. Open research questions are discussed in our concluding section. --

    Bifurcation Routes to Volatility Clustering under Evolutionary Learning

    Full text link
    A simple asset pricing model with two types of boundedly rational traders, fundamentalists and chartists, is studied. Fractions of trader types change over time according to evolutionary learning, with chartists conditioning their forecasting rule upon deviations from a benchmark fundamental. Volatility clustering arises endogenously and two generic mechanisms are proposed as an explanation: (1) coexistence of a stable steady state and a stable limit cycle, due to a so-called Chenciner bifurcation of the system and (2) intermittency and associated bifurcation routes to strange attractors. Economic intuition as to why these phenomena arise in nonlinear multi-agent evolutionary systems is provided

    Three-State Sentiment Dynamics

    Get PDF
    The main objective of this thesis is a detailed modeling of the dynamic components, i.e. transition rates with an embedded 'herding' component, in a stochastic framework. In addition to bold and cautious sentiment neutrality is incorporated into three versions of three-state models of sentiment dynamics. One version is formalized via the transition probability approach while a second version utilizes the discrete choice framework. The third model considers a bold opinion index and a neutrality index. Survey data on American investor sentiment is used to estimate the model parameters via maximum likelihood. The forecasting performance of this model is remarkable in terms of all three sentiments. The models exhibit a realistic description of the underlying group dynamics, including the separate treatment of the neutral agents. The findings provide an indication of the necessary degree of complexity of behavioral models in different scenarios. It can be concluded that the neutrality index adds additional explanatory power

    Complex network analysis and nonlinear dynamics

    Get PDF
    This chapter aims at reviewing complex network and nonlinear dynamical models and methods that were either developed for or applied to socioeconomic issues, and pertinent to the theme of New Economic Geography. After an introduction to the foundations of the field of complex networks, the present summary introduces some applications of complex networks to economics, finance, epidemic spreading of innovations, and regional trade and developments. The chapter also reviews results involving applications of complex networks to other relevant socioeconomic issue
    • ā€¦
    corecore