107 research outputs found

    Neuromuscular electrical stimulation of the quadriceps in patients with non-small cell lung cancer receiving palliative chemotherapy: a randomized Phase II study

    Get PDF
    Background A reduced exercise capacity is associated with increased morbidity and mortality in patients with advanced non-small cell lung cancer (NSCLC). Therapeutic exercise can be beneficial and neuromuscular electrical stimulation (NMES) of the quadriceps muscles may represent a practical approach. The primary aim of this study was to determine the acceptability of NMES of the quadriceps to patients with NSCLC used alongside palliative chemotherapy. Secondary aims explored aspects of safety and efficacy of NMES in this setting. Methods Patients with advanced NSCLC due to receive first-line palliative chemotherapy were randomized to usual care with or without NMES. They were asked to undertake 30 minute sessions of NMES, ideally daily, but as a minimum, three times weekly. For NMES to be considered acceptable, it was predetermined that ≥80% of patients should achieve this minimum level of adherence. Qualitative interviews were held with a subset of patients to explore factors influencing adherence. Safety was assessed according to the Common Terminology Criteria for Adverse Events. Quadriceps muscle strength, thigh lean mass, and physical activity level were assessed at baseline and after three cycles of chemotherapy. Results 49 patients (28 male, median (IQR) age 69 (64−75) years) participated. Of 30 randomized to NMES, 18 were eligible for the primary endpoint, of whom 9 (50% [90% CI, 29 to 71]) met the minimum level of adherence. Adherence was enhanced by incorporating sessions into a daily routine and hindered by undesirable effects of chemotherapy. There were no serious adverse events related to NMES, nor significant differences in quadriceps muscle strength, thigh lean mass or physical activity level between groups. Conclusions NMES is not acceptable in this setting, nor was there a suggestion of benefit. The need remains to explore NMES in patients with cancer in other settings

    Neuromuscular electrical stimulation as an adjunct to standard care in improving walking distances in intermittent claudication patients: the NESIC RCT

    Get PDF
    Background Peripheral arterial disease is common and associated with increased cardiovascular morbidity and mortality. While patients with peripheral arterial disease are known to benefit from supervised exercise therapy, it is not always available. Neuromuscular electrical stimulation devices may offer a similar benefit. A randomised controlled trial was required to ascertain whether such devices can benefit patients who receive supervised exercise therapy and those who do not. Objective(s) The primary objective was to assess the mean difference in absolute walking distance at 3 months in intermittent claudication patients receiving either a neuromuscular electrical stimulation device and local standard care (intervention), or local standard care alone (control). Design A pragmatic, multicentre, randomised controlled trial stratified by centre. Setting Secondary-care National Health Service hospitals in the United Kingdom. Participants Patients aged ≥18 years, with a diagnosis of intermittent claudication according to the Edinburgh Claudication Questionnaire and ankle–brachial pressure index (or stress test), without contraindications to neuromuscular electrical stimulation were deemed eligible to partake. Interventions Participants were randomised 1 : 1 to either local standard care or local standard care and neuromuscular electrical stimulation. Due to the nature of the intervention, it was unfeasible to blind the research nurse or participant to the study allocation. Main outcome measures The primary outcome measure was absolute walking distance measured by treadmill testing at 3 months. Secondary outcomes included change in initial claudication distance, quality of life, compliance with interventions and haemodynamic assessments. Results Two hundred patients underwent randomisation, with 160 patients having analysable primary outcome data for the intention-to-treat analysis intervention (n = 80); control (n = 80). As the data were right-censored, a Tobit regression model was used to analyse the primary outcome, utilising the square root of the absolute walking distance to accommodate the skewed data. However, as this made the data difficult to interpret, a Tobit regression model using raw absolute walking distance data was used as well. Neuromuscular electrical stimulation improved the difference in absolute walking distance at 3 months but this was not statistically significant (square root of absolute walking distance: 0.835 units, 95% confidence interval −0.67 to 2.34 units; p = 0.28/absolute walking distance raw data: 27.18 m, 95% confidence interval −26.92 to 81.28 m; p = 0.323). Supervised exercise therapy participants showed a markedly improved absolute walking distance compared with patients receiving best medical therapy only at 3 months (square root of absolute walking distance: 3.295 units 95% confidence interval 1.77 to 4.82; p < 0.001/absolute walking distance raw data: 121.71 m, 95% confidence interval 67.32 to 176.10; p ≤ 0.001). Neuromuscular electrical stimulation significantly improved absolute walking distance at 3 months for mild claudicants (square root of absolute walking distance: 2.877 units, 95% confidence interval 0.51 to 5.25; p = 0.019/absolute walking distance raw data: 120.55 m, 95% confidence interval 16.03 to 225.06; p = 0.03) compared to the control arm. This was an unplanned (post hoc) analysis. There were no clear differences in mechanistic measurements between the two treatment groups over the follow-up period. Serious adverse events were evenly reported between the two groups; all being classified as either not related or unlikely to be related to the study device. Limitations Absolute walking distance was used as the primary outcome measure; there was a large range of baseline distances in both groups with right-skewed distribution. We did not stratify by baseline absolute walking distance for the primary outcome analysis. Additionally, only 160 patients had analysable primary outcome data due to missing treadmill data. Conclusions Supervised exercise therapy is an effective treatment for intermittent claudication. Neuromuscular electrical stimulation appears to be beneficial as an adjunct to supervised exercise therapy and on its own in mild claudicants. Future work Further studies are needed to confirm the effectiveness of neuromuscular electrical stimulation in combination with supervised exercise therapy, and in mild to moderate claudicants in a larger sample size. Study registration This trial is registered as ISRCTN18242823. Funding This project was funded by the Efficacy and Mechanism Evaluation (EME) Programme, a Medical Research Council (MRC) and National Institute for Health and Care Research (NIHR) partnership (project number 15/180/68). This will be published in full in Efficacy and Mechanism Evaluation; Vol. 10, No. 2. See the NIHR Journals Library website for further project information. Infrastructure support for this research was provided by the NIHR Imperial Biomedical Research Centre (BRC) (with others, e.g. NIHR Imperial CRF, Imperial College ECMC, NIHR Imperial PSTRC, NIHR London MIC, etc.)
    • …
    corecore