12,073 research outputs found

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    On the similarity relation within fuzzy ontology components

    Get PDF
    Ontology reuse is an important research issue. Ontology merging, integration, mapping, alignment and versioning are some of its subprocesses. A considerable research work has been conducted on them. One common issue to these subprocesses is the problem of defining similarity relations among ontologies components. Crisp ontologies become less suitable in all domains in which the concepts to be represented have vague, uncertain and imprecise definitions. Fuzzy ontologies are developed to cope with these aspects. They are equally concerned with the problem of ontology reuse. Defining similarity relations within fuzzy context may be realized basing on the linguistic similarity among ontologies components or may be deduced from their intentional definitions. The latter approach needs to be dealt with differently in crisp and fuzzy ontologies. This is the scope of this paper.ou

    Crowd-Sourcing Fuzzy and Faceted Classification for Concept Search

    Full text link
    Searching for concepts in science and technology is often a difficult task. To facilitate concept search, different types of human-generated metadata have been created to define the content of scientific and technical disclosures. Classification schemes such as the International Patent Classification (IPC) and MEDLINE's MeSH are structured and controlled, but require trained experts and central management to restrict ambiguity (Mork, 2013). While unstructured tags of folksonomies can be processed to produce a degree of structure (Kalendar, 2010; Karampinas, 2012; Sarasua, 2012; Bragg, 2013) the freedom enjoyed by the crowd typically results in less precision (Stock 2007). Existing classification schemes suffer from inflexibility and ambiguity. Since humans understand language, inference, implication, abstraction and hence concepts better than computers, we propose to harness the collective wisdom of the crowd. To do so, we propose a novel classification scheme that is sufficiently intuitive for the crowd to use, yet powerful enough to facilitate search by analogy, and flexible enough to deal with ambiguity. The system will enhance existing classification information. Linking up with the semantic web and computer intelligence, a Citizen Science effort (Good, 2013) would support innovation by improving the quality of granted patents, reducing duplicitous research, and stimulating problem-oriented solution design. A prototype of our design is in preparation. A crowd-sourced fuzzy and faceted classification scheme will allow for better concept search and improved access to prior art in science and technology
    • …
    corecore